
High-Temperature Stable Dispersed Particle Gel for Enhanced Profile Control in Carbon Capture, Utilization, and Storage (CCUS) Applications
Lin Du, Yao-Yu Xiao, Zhi-Chao Jiang, Hongbo Zeng, Huazhou Li
Engineering ›› 2025, Vol. 48 ›› Issue (5) : 128-140.
High-Temperature Stable Dispersed Particle Gel for Enhanced Profile Control in Carbon Capture, Utilization, and Storage (CCUS) Applications
CO2-responsive gels, which swell upon contact with CO2, are widely used for profile control to plug high-permeability gas flow channels in carbon capture, utilization, and storage (CCUS) applications in oil reservoirs. However, the use of these gels in high-temperature CCUS applications is limited due to their reversible swelling behavior at elevated temperatures. In this study, a novel dispersed particle gel (DPG) suspension is developed for high-temperature profile control in CCUS applications. First, we synthesize a double-network hydrogel consisting of a crosslinked polyacrylamide (PAAm) network and a crosslinked sodium alginate (SA) network. The hydrogel is then sheared in water to form a pre-prepared DPG suspension. To enhance its performance, the gel particles are modified by introducing potassium methylsilanetriolate (PMS) upon CO2 exposure. Comparing the particle size distributions of the modified and pre-prepared DPG suspension reveals a significant swelling of gel particles, over twice their original size. Moreover, subjecting the new DPG suspension to a 100 °C environment for 24 h demonstrates that its gel particle sizes do not decrease, confirming irreversible swelling, which is a significant advantage over the traditional CO2-responsive gels. Thermogravimetric analysis further indicates improved thermal stability compared to the pre-prepared DPG particles. Core flooding experiments show that the new DPG suspension achieves a high plugging efficiency of 95.3% in plugging an ultra-high permeability sandpack, whereas the pre-prepared DPG suspension achieves only 82.8%. With its high swelling ratio, irreversible swelling at high temperatures, enhanced thermal stability, and superior plugging performance, the newly developed DPG suspension in this work presents a highly promising solution for profile control in high-temperature CCUS applications.
Carbon capture, utilization, and storage / Profile control / Dispersed particle gel / Double-network hydrogel / Irreversible swelling
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
/
〈 |
|
〉 |