Long-Term Succession in Cyanobacteria and Aquatic Plant Communities: Insights from Sediment Analysis

Hongwei Yu, He Ji, Yang Li, Jing Qi, Baiwen Ma, Chengzhi Hu, Jiuhui Qu

Engineering ›› 2025

PDF(5706 KB)
PDF(5706 KB)
Engineering ›› 2025 DOI: 10.1016/j.eng.2025.04.012

Long-Term Succession in Cyanobacteria and Aquatic Plant Communities: Insights from Sediment Analysis

Author information +
History +

Abstract

Historical legacy effects and the mechanisms underlying primary producer community succession are not well understood. In this study, environmental DNA (eDNA) sequencing technology and chronological sequence analysis in sediments were utilized to examine long-term changes in cyanobacterial and aquatic plant communities. The analysis results indicate that the nutritional status and productivity of aquatic ecosystems have been relatively high since 2010, which could reflect a period of eutrophication due to high long-term rates of organic matter deposition (33.22–42.08 g·kg−1). The temporal and spatial characteristics of community structure were related to environmental filtering based on trophic status between 1849 and 2020. Turnover in the primary producer community was confirmed through change-point model analyses with regime shifts toward new ecological states. On the basis of ecological data and geochronological techniques, it was determined that the quality of habitats at a local scale may affect ecological niche shifts between cyanobacterial and aquatic plant communities. These observations suggest how primary producers respond to rapid urbanization, serving as an invaluable guide for protecting freshwater biodiversity.

Keywords

Intensification of land use / Regime shifts / Macrophytes / Anthropogenic impact / Community succession

Cite this article

Download citation ▾
Hongwei Yu, He Ji, Yang Li, Jing Qi, Baiwen Ma, Chengzhi Hu, Jiuhui Qu. Long-Term Succession in Cyanobacteria and Aquatic Plant Communities: Insights from Sediment Analysis. Engineering, 2025 https://doi.org/10.1016/j.eng.2025.04.012

References

[1]
Borgwardt F, Robinson L, Trauner D, Teixeira H, Nogueira AJA, Lilleb AIø, et al.Exploring variability in environmental impact risk from human activities across aquatic ecosystems.Sci Total Environ 2019; 652:1396-1408.
[2]
Hondula K, Pace M, Cole J, Batt R.Hydrogen isotope discrimination in aquatic primary producers: implications for aquatic food web studies.Aquat Sci 2014; 76:217-229.
[3]
Dhir B.Phytoremediation: role of aquatic plants in environmental clean-up. Berlin: Springer; 2013.
[4]
Jin L, Chen H, Matsuzaki SIS, Shinohara R, Wilkinson DM, Yang J.Tipping points of nitrogen use efficiency in freshwater phytoplankton along trophic state gradient.Water Res 2023; 245:120639.
[5]
Su H, Wu Y, Xia W, Yang L, Chen J, Han W, et al.Stoichiometric mechanisms of regime shifts in freshwater ecosystem.Water Res 2019; 149:302-310.
[6]
Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, et al.Early-warning signals for critical transitions.Nature 2009; 461(7260):53-59.
[7]
Botrel M, Maranger R.Global historical trends and drivers of submerged aquatic vegetation quantities in lakes.Glob Change Biol 2023; 29(9):2493-2509.
[8]
Zhong A, Song X, Zhang J, He L, Yi C, Ni L, et al.Diversity and distribution of aquatic plants in Lake Donghu in Wuhan in 2014.Res Environ Sci 2017; 30(3):398.
[9]
Zhang H, Huo S, Xiao Z, He Z, Yang J, Yeager KM, et al.Climate and nutrient-driven regime shifts of cyanobacterial communities in low-latitude plateau lakes.Environ Sci Technol 2021; 55(5):3408-3418.
[10]
Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM.Cyanobacterial blooms.Nat Rev Microbiol 2018; 16(8):471-483.
[11]
Liu C, Du Y, Zhong J, Zhang L, Huang W, Han C, et al.From macrophyte to algae: differentiated dominant processes for internal phosphorus release induced by suspended particulate matter deposition.Water Res 2022; 224:119067.
[12]
Cheng C, Chen J, Su H, Chen J, Rao Q, Yang J, et al.Eutrophication decreases ecological resilience by reducing species diversity and altering functional traits of submerged macrophytes.Glob Change Biol 2023; 29(17):5000-5013.
[13]
Banerjee P, Stewart KA, Dey G, Antognazza CM, Sharma RK, Maity JP, et al.Environmental DNA analysis as an emerging non-destructive method for plant biodiversity monitoring: a review. AoB Plants, 14(4):plac031 (2022)
[14]
Qu C, Stewart KA.Evaluating monitoring options for conservation: comparing traditional and environmental DNA tools for a critically endangered mammal.Naturwissenschaften 2019; 106(3):9.
[15]
Eiler A, Löfgren A, Hjerne O, Nord Sén, Saetre P.Environmental DNA (eDNA) detects the pool frog (Pelophylax lessonae) at times when traditional monitoring methods are insensitive.Sci Rep 2018; 8(1):5452.
[16]
Piggott MP, Banks SC, Broadhurst BT, Fulton CJ, Lintermans M.Comparison of traditional and environmental DNA survey methods for detecting rare and abundant freshwater fish.Aquat Conserv 2021; 31(1):173-184.
[17]
Beng KC, Corlett RT.Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects.Biodivers Conserv 2020; 29(7):2089-2121.
[18]
Li F, Zhang X, Xie Y, Wang J.Sedimentary DNA reveals over 150 years of ecosystem change by human activities in Lake Chao.China. Environ Int 2019; 133:105214.
[19]
Hosein FN, Austin N, Maharaj S, Johnson W, Rostant L, Ramdass AC, et al.Utility of DNA barcoding to identify rare endemic vascular plant species in Trinidad.Ecol Evol 2017; 7(18):7311-7333.
[20]
Zhang Y, Zhang X, Li F, Altermatt F.Fishing eDNA in one of the World’s largest rivers: a case study of cross-sectional and depth profile sampling in the Yangtze.Environ Sci Technol 2023; 57(51):21691-21703.
[21]
Ji F, Yan L, Yan S, Qin T, Shen J, Zha J.Estimating aquatic plant diversity and distribution in rivers from Jingjinji region, China, using environmental DNA metabarcoding and a traditional survey method.Environ Res 2021; 199:111348.
[22]
P Vérez, Liu Y, Wong WW, Kessler A, Cook PLM, Zawadzki A, et al.Using sedimentary prokaryotic communities to assess historical changes in the Gippsland Lakes.Freshw Biol 2023; 68(11):1839-1858.
[23]
Zalewska-Ga Jłosz, Jopek M, Ilnicki T.the Hybridization in Batrachium group. Controversial delimitation between heterophyllous Ranunculus penicillatus and the hybrid Ranunculus fluitans × R. peltatus.Aquat Bot 2015; 120:160-168.
[24]
Wasekura H, Horie S, Fujii S, Maki M.Molecular identification of alien species of Vallisneria (Hydrocharitaceae) species in Japan with a special emphasis on the commercially traded accessions and the discovery of hybrid between nonindigenous V. spiralis and native V. denseserrulata.Aquat Bot 2016; 128:1-6.
[25]
Yan Q, Stegen JC, Yu Y, Deng Y, Li X, Wu S, et al.Nearly a decade-long repeatable seasonal diversity patterns of bacterioplankton communities in the eutrophic Lake Donghu (Wuhan, China).Mol Ecol 2017; 26(14):3839-3850.
[26]
Appleby PG.Chronostratigraphic techniques in recent sediments.In: Last WM, Smol JP, editors. Tracking environmental change using lake sediments: basin analysis, coring, and chronological techniques. Dordrecht: Springer Netherlands; 2001. p. 171–203.
[27]
Cao X, Xu X, Bian R, Wang Y, Yu H, Xu Y, et al.Sedimentary ancient DNA metabarcoding delineates the contrastingly temporal change of lake cyanobacterial communities.Water Res 2020; 183:116077.
[28]
Nübel U, Garcia-Pichel F, Muyzer G.PCR primers to amplify 16S rRNA genes from cyanobacteria.Appl Environ Microbiol 1997; 63(8):3327-3332.
[29]
Liu L, Yang J, Yu Z, Wilkinson DM.The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China.ISME J 2015; 9(9):2068-2077.
[30]
Edgar RC.UPARSE: highly accurate OTU sequences from microbial amplicon reads.Nat Methods 2013; 10(10):996-998.
[31]
Adamec L.CDK cook: aquatic plant book. (2nd ed.), SPB Academic Publishing, New York City (1990)
[32]
Xue L, Yang F, Yang C, Wei G, Li W, He X.Hydrological simulation and uncertainty analysis using the improved TOPMODEL in the arid Manas River basin, China.Sci Rep 2018; 8(1):452.
[33]
Du C, Ren H, Qin Q, Meng J, Zhao S.A practical split-window algorithm for estimating land surface temperature from Landsat 8 data.Remote Sens 2015; 7(1):647-665.
[34]
Pei J, Wang L, Huang H, Wang L, Li W, Wang X, et al.Characterization and attribution of vegetation dynamics in the ecologically fragile South China Karst: evidence from three decadal Landsat observations.Front Plant Sci 2022; 13:1043389.
[35]
Hu C.A novel ocean color index to detect floating algae in the global oceans.Remote Sens Environ 2009; 113(10):2118-2129.
[36]
Taylor WA.Change-point analyzer 2.3 shareware program. Libertyville: Taylor Enterprises; 2000.
[37]
Xie L, Xie P.Long-term (1956–1999) dynamics of phosphorus in a shallow, subtropical Chinese lake with the possible effects of cyanobacterial blooms.Water Res 2002; 36(1):343-349.
[38]
Emeis KC, Struck U, Leipe T, Pollehne F, Kunzendorf H, Christiansen C.Changes in the C, N, P burial rates in some Baltic Sea sediments over the last 150 years—relevance to P regeneration rates and the phosphorus cycle.Mar Geol 2000; 167(1):43-59.
[39]
Horppila J.Sediment nutrients, ecological status and restoration of lakes.Water Res 2019; 160:206-208.
[40]
Chen X, Yang X, Dong X, Liu Q.Nutrient dynamics linked to hydrological condition and anthropogenic nutrient loading in Chaohu Lake (Southeast China).Hydrobiologia 2011; 661(1):223-234.
[41]
Zhang H, Huo S, Yeager KM, Wu F.Sedimentary DNA record of eukaryotic algal and cyanobacterial communities in a shallow Lake driven by human activities and climate change.Sci Total Environ 2021; 753:141985.
[42]
Jin L, Wu Q, Xie S, Chen W, Duan C, Sun C, et al.Phosphorus stoichiometric homeostasis of submerged macrophytes and associations with interspecific interactions and community stability in Erhai Lake.China. Water Res 2024; 256:121575.
[43]
Torres IC, Inglett PW, Brenner M, Kenney WF, Ramesh RK.Stable isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status.J Paleolimnol 2012; 47(4):693-706.
[44]
Contreras S, Werne JP, Araneda A, Urrutia R, Conejero CA.Organic matter geochemical signatures (TOC, TN, C/N ratio, δ13C and δ15N) of surface sediment from lakes distributed along a climatological gradient on the western side of the southern Andes.Sci Total Environ 2018; 630:878-888.
[45]
Yu F, Zong Y, Lloyd JM, Huang G, Leng MJ, Kendrick C, et al.Bulk organic δ13C and C/N as indicators for sediment sources in the Pearl River delta and estuary, southern China.Estuar Coast Shelf Sci 2010; 87(4):618-630.
[46]
Swart PK, Eberli G.The nature of the δ13C of periplatform sediments: implications for stratigraphy and the global carbon cycle.Sediment Geol 2005; 175(1):115-129.
[47]
Swart PK.The geochemistry of carbonate diagenesis: the past, present and future.Sedimentology 2015; 62(5):1233-1304.
[48]
Brett MT, Bunn SE, Chandra S, Galloway AWE, Guo F, Kainz MJ, et al.How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems?.Freshw Biol 2017; 62(5):833-853.
[49]
Herczeg AL, Smith AK, Dighton JC.A 120 year record of changes in nitrogen and carbon cycling in Lake Alexandrina, South Australia: C:N, δ15N and δ13C in sediments.Appl Geochem 2001; 16(1):73-84.
[50]
Wu T, Qin B, Brookes JD, Yan W, Ji X, Feng J.Spatial distribution of sediment nitrogen and phosphorus in Lake Taihu from a hydrodynamics-induced transport perspective.Sci Total Environ 2019; 650:1554-1565.
[51]
Shang J, Zhang W, Li Y, Zheng J, Ma X, Wang L, et al.How nutrient loading leads to alternative stable states in microbially mediated N-cycle pathways: a new insight into bioavailable nitrogen removal in urban rivers.Water Res 2023; 236:119938.
[52]
Yao X, Ding R, Zhou Y, Wang Z, Liu Y, Fu D, et al.How internal nutrient loading forms in shallow lakes: insights from benthic organic matter mineralization.Water Res 2023; 245:120544.
[53]
Fabrin TMC, Stabile BHM, da MV Silva, Jati S, Rodrigues L, de AV Oliveira.Cyanobacteria in an urban lake: hidden diversity revealed by metabarcoding.Aquat Ecol 2020; 54(2):671-675.
[54]
Poniewozik M, Lenard T.Phytoplankton composition and ecological status of lakes with cyanobacteria dominance.Int J Environ Res Public Health 2022; 19(7):3832.
[55]
Domaizon I, Savichtcheva O, Debroas D, Arnaud F, Villar C, Pignol C, et al.DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages.Biogeosciences 2013; 10(6):3817-3838.
[56]
Harke MJ, Steffen MM, Gobler CJ, Otten TG, Wilhelm SW, Wood SA, et al.A review of the global ecology, genomics, and biogeography of the toxic Cyanobacterium. Microcystis spp. Harmful Algae, 54 (2016), pp. 4-20
[57]
Zhou L, Li Q, Dai L.Preliminary study on macrophyte series in Lake Donghu, Wuchang.Journal of Wuhan University: Nature Science Edition 1963; 2:122-132.
[58]
Pip E.The ecology of Potamogeton species in central North America.Hydrobiologia 1987; 153(3):203-216.
[59]
Wieglet G, Kaplan Z.An account of the species of Potamogeton L. (Potamogetonaceae).Folia Geobot 1998; 33(3):241-316.
[60]
Li H, Li Q, Luo X, Fu J, Zhang J.Responses of the submerged macrophyte Vallisneria natans to a water depth gradient.Sci Total Environ 2020; 701:134944.
[61]
Zhu L, Xu H, Xiao W, Lu J, Lu D, Chen X, et al.Ecotoxicological effects of sulfonamide on and its removal by the submerged plant Vallisneria natans (Lour.) Hara.Water Res 2020; 170:115354.
[62]
Li H, Wang X, Liang C, Hao Z, Zhou L, Ma S, et al.Aboveground-belowground biodiversity linkages differ in early and late successional temperate forests.Sci Rep 2015; 5:12234.
[63]
Ploughe LW, Carlyle CN, Fraser LH.Priority effects: how the order of arrival of an invasive grass, Bromus tectorum, alters productivity and plant community structure when grown with native grass species.Ecol Evol 2020; 10(23):13173-13181.
[64]
Peixoto S, Chaves C, Velo-Antón G, Beja P, Egeter B.Species detection from aquatic eDNA: assessing the importance of capture methods.Environmental DNA 2021; 3(2):435-448.
[65]
King WM, Curless SE, Hood JM.River phosphorus cycling during high flow may constrain Lake Erie cyanobacteria blooms.Water Res 2022; 222:118845.
[66]
Akbarzadeh Z, Maavara T, Slowinski S, Van P Cappellen.Effects of damming on river nitrogen fluxes: a global analysis.Global Biogeochem Cycles 2019; 33(11):1339-1357.
[67]
Maavara T, Parsons CT, Ridenour C, Stojanovic S, Dürr HH, Powley HR, et al.Global phosphorus retention by river damming.Proc Natl Acad Sci USA 2015; 112(51):15603-15608.
[68]
Glibert PM, Kana TM, Brown K.From limitation to excess: the consequences of substrate excess and stoichiometry for phytoplankton physiology, trophodynamics and biogeochemistry, and the implications for modeling.J Mar Syst 2013; 125:14-28.
[69]
Donald DB, Bogard MJ, Finlay K, Bunting L, Leavitt PR.Phytoplankton-specific response to enrichment of phosphorus-rich surface waters with ammonium, nitrate, and urea.PLoS One 2013; 8(1):e53277.
[70]
Domingues RB, Barbosa AB, Sommer U, Galv HMão.Ammonium, nitrate and phytoplankton interactions in a freshwater tidal estuarine zone: potential effects of cultural eutrophication.Aquat Sci 2011; 73(3):331-343.
[71]
Singh R, Singh GS.Integrated management of the Ganga River: an ecohydrological approach.Ecohydrol Hydrobiol 2020; 20(2):153-174.
[72]
Chen Q, Wang M, Zhang J, Shi W, Mynett AE, Yan H, et al.Physiological effects of nitrate, ammonium, and urea on the growth and microcystins contamination of Microcystis aeruginosa: implication for nitrogen mitigation.Water Res 2019; 163:114890.
[73]
Delaney TP, Cattolico RA.Chloroplast ribosomal DNA organization in the chromophytic alga Olisthodiscus luteus.Curr Genet 1989; 15(3):221-229.
[74]
Zamparas M, Zacharias I.Restoration of eutrophic freshwater by managing internal nutrient loads: a review.Sci Total Environ 2014; 496:551-562.
[75]
Bai G, Zhang Y, Yan P, Yan W, Kong L, Wang L, et al.Spatial and seasonal variation of water parameters, sediment properties, and submerged macrophytes after ecological restoration in a long-term (6 year) study in Hangzhou west lake in China: submerged macrophyte distribution influenced by environmental variables.Water Res 2020; 186:116379.
[76]
Cheng Y, Jiao L, Cheng Q, He J, Zhang Y, Ding S.The evolution of a typical plateau lake from macrophyte to algae leads to the imbalance of nutrient retention.Water Res 2023; 236:119937.
[77]
Yogev U, Vogler M, Nir O, Londong J, Gross A.Phosphorous recovery from a novel recirculating aquaculture system followed by its sustainable reuse as a fertilizer.Sci Total Environ 2020; 722:137949.
[78]
Williams JDH, Shear H, Thomas RL.Availability to Scenedesmus quadricauda of different forms of phosphorus in sedimentary materials from the Great Lakes1.Limnol Oceanogr 1980; 25(1):1-11.
[79]
Spears BM, Carvalho L, Perkins R, Kirika A, Paterson DM.Long-term variation and regulation of internal phosphorus loading in Loch Leven.Hydrobiologia 2012; 681(1):23-33.
[80]
Yang Y, Yin X, Yang Z, Sun T, Xu C.Detection of regime shifts in a shallow lake ecosystem based on multi-proxy paleolimnological indicators.Ecol Indic 2018; 92:312-321.
[81]
Rooney N, Kalff J, Habel C.The role of submerged macrophyte beds in phosphorus and sediment accumulation in Lake Memphremagog, Quebec.Canada. Limnol Oceanogr 2003; 48(5):1927-1937.
[82]
Wang S, Luo BK, Qin YJ, Zhao JG, Wang TT, Stewart SD, et al.Fish isotopic niches associated with environmental indicators and human disturbance along a disturbed large subtropical river in China.Sci Total Environ 2021; 750:141667.
[83]
Scheffer M, Carpenter S, Foley JA, Folke C, Walker B.Catastrophic shifts in ecosystems.Nature 2001; 413(6856):591-596.
[84]
Hastings A, Wysham DB.Regime shifts in ecological systems can occur with no warning.Ecol Lett 2010; 13(4):464-472.
[85]
Carpenter SR, Brock WA.Rising variance: a leading indicator of ecological transition.Ecol Lett 2006; 9(3):311-318.
[86]
van D Wijk, Chang M, Janssen ABG, Teurlincx S, Mooij WM.Regime shifts in shallow lakes explained by critical turbidity.Water Res 2023; 242:119950.
[87]
Hargeby A, Blindow I, Andersson G.Long-term patterns of shifts between clear and turbid states in lake Krankesjön and Lake Tåkern.Ecosystems 2007; 10(1):29-36.
[88]
Tátrai I, Boros G, ÁGyörgy I, Mátyás K, Korponai J, Pomogyi P, et al.Abrupt shift from clear to turbid state in a shallow eutrophic, biomanipulated lake.Hydrobiologia 2009; 620(1):149-161.
[89]
Zhang J, Shi K, Paerl HW, Rühland KM, Yuan Y, Wang R, et al.Ancient DNA reveals potentially toxic cyanobacteria increasing with climate change.Water Res 2023; 229:119435.
[90]
Wan X, Lu X, Zhu L, Feng J.Relative prevalence of top–down versus bottom-up control in planktonic ecosystem under eutrophication and climate change: a comparative study of typical bay and estuary.Water Res 2024; 255:121487.
[91]
Yan G, Ma J, Qiu D, Wu Z.Succession and species replacement of aquatic plant community in East Lake.Acta Phytoecol Sin 1997; 21(4):319-327.
[92]
Zhong A, Xin SONG, Jing ZHANG, Liang HE, Chunlong YI, Leyi NI, et al.Diversity and distribution of aquatic plants in Lake Donghu in Wuhan in 2014.Res J Environ Sci 2017;30(3):398–405. Chinese.
[93]
Ni L.Long-term changes of the structure and biodiversity of aquatic vegetation of Lake Donghu.Wuhan. Acta Hydrobiol Sin 1996; 20(S1):60-74.
[94]
Hu Y, Zhang J, Wang Y, Hu S.Distinct mechanisms shape prokaryotic community assembly across different land-use intensification.Water Res 2023; 245:120601.
[95]
Liu H, Shen G, Huang Q.Evolution of urban heat island effect and its relationship with land use change in Wuhan city in recent 10 years. Resour Environ Yangtze Basin 2017;26(9):1466. Chinese.
[96]
Arsiso BK, Tsidu GM, Abegaz NT.Impact of land use and land cover change on land surface temperature over Lake Tana Basin.J Afr Earth Sci 2023; 207:105047.
[97]
Rigosi A, Carey CC, Ibelings BW, Brookes JD.The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa.Limnol Oceanogr 2014; 59(1):99-114.
[98]
Zhang M, Yu Y, Yang Z, Kong F.Photochemical responses of phytoplankton to rapid increasing-temperature process.Phycol Res 2012; 60(3):199-207.
[99]
Beaulieu M, Pick F, Gregory-Eaves I.Nutrients and water temperature are significant predictors of cyanobacterial biomass in a 1147 lakes data set.Limnol Oceanogr 2013; 58(5):1736-1746.
[100]
de DBV Waal, Gsell AS, Harris T, Paerl HW, de LN Senerpont Domis, Huisman J.Hot summers raise public awareness of toxic cyanobacterial blooms.Water Res 2023; 249:120817.
[101]
Cha Y, Cho KH, Lee H, Kang T, Kim JH.The relative importance of water temperature and residence time in predicting cyanobacteria abundance in regulated rivers.Water Res 2017; 124:11-19.
[102]
Rao Q, Su H, Ruan L, Deng X, Wang L, Rao X, et al.Stoichiometric and physiological mechanisms that link hub traits of submerged macrophytes with ecosystem structure and functioning.Water Res 2021; 202:117392.
[103]
García-Palacios P, Gross N, Gaitán J, Maestre FT.Climate mediates the biodiversity–ecosystem stability relationship globally.Proc Natl Acad Sci USA 2018; 115(33):8400-8405.
[104]
Bai G, Liu Y, Liu Z, Kong L, Tang Y, Ding Z, et al.Effects of lake geo-engineering on plankton in a typical shallow urban lake: evidence based on 10-year data.ACS ES&T Engineering 2023; 3(1):105-120.
[105]
Phillips JS, McCormick AR, ÁEinarsson , Grover SN, Ives AR.Spatiotemporal variation in the sign and magnitude of ecosystem engineer effects on lake ecosystem production.Ecosphere 2019; 10(6):e02760.
AI Summary AI Mindmap
PDF(5706 KB)

Accesses

Citations

Detail

Sections
Recommended

/