Space–Ground Fluid AI for 6G Edge Intelligence

Qian Chen , Zhanwei Wang , Xianhao Chen , Juan Wen , Di Zhou , Sijing Ji , Min Sheng , Kaibin Huang

Engineering ›› 2025, Vol. 54 ›› Issue (11) : 14 -19.

PDF (1286KB)
Engineering ›› 2025, Vol. 54 ›› Issue (11) : 14 -19. DOI: 10.1016/j.eng.2025.06.009
Views & Comments

Space–Ground Fluid AI for 6G Edge Intelligence

Author information +
History +
PDF (1286KB)

Graphical abstract

Cite this article

Download citation ▾
Qian Chen, Zhanwei Wang, Xianhao Chen, Juan Wen, Di Zhou, Sijing Ji, Min Sheng, Kaibin Huang. Space–Ground Fluid AI for 6G Edge Intelligence. Engineering, 2025, 54(11): 14-19 DOI:10.1016/j.eng.2025.06.009

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Letaief KB, Shi Y, Lu J, Lu J.Edge artificial intelligence for 6G: vision, enabling technologies, and applications.IEEE J Sel Areas Commun 2022; 40(1):5-36.

[2]

Luo H, Shi X, Chen Y, Meng X, Zhao F, Mayer M, et al.Very-low-Earth-orbit satellite networks for 6G. Huawei, Shenzhen (2022)

[3]

Tung L.SpaceX: we’ve launched 32,000 Linux computers into space for Starlink Internet [Internet].New York City: ZDNet; 2020 Jun 8 [cited 2024 Nov 24]. Available from: https://www.zdnet.com/article/spacex-weve-launched-32000-linux-computers-into-space-for-starlink-internet/.

[4]

Chen Q, Meng W, Quek TQS, Chen S.Multi-tier hybrid offloading for computation-aware IoT applications in civil aircraft-augmented SAGIN.IEEE J Sel Areas Commun 2023; 41(2):399-417.

[5]

Cheng N, Lyu F, Quan W, Zhou C, He H, Shi W, et al.Space/aerial-assisted computing offloading for IoT applications: a learning-based approach.IEEE J Sel Areas Commun 2019; 37(5):1117-1129.

[6]

Fang Q, Zhai Z, Yu S, Wu Q, Gong X, Chen X.Olive branch learning: a topology-aware federated learning framework for space–air–ground integrated network.IEEE Trans Wirel Commun 2023; 22(7):4534-4551.

[7]

Yao S, Lin Y, Wang M, Xu K, Xu M, Xu C, et al.LEOEdge: a satellite–ground cooperation platform for AI inference in large LEO constellations.IEEE J Sel Areas Commun 2025; 43(1):36-50.

[8]

AL-Hourani A.A tractable approach for predicting pass duration in dense satellite networks.IEEE Commun Lett 2021; 25(8):2698-2702.

[9]

Shuman M.The dream of affordable Internet access for everyone is getting closer [Presentation].In: ITU International Satellite Symposium 2017—Space Development and Sustainability in the Americas Region; 2017 May 29–31; San Carlos de Bariloche, Argentina.

[10]

Matthiesen B, Razmi N, Leyva-Mayorga I, Dekorsy A, Popovski P.Federated learning in satellite constellations.IEEE Netw 2024; 38(2):232-239.

[11]

Lansel X.Optical comms’ ecosystem setting up for the technological breakthrough [Internet].Seongnam: Asia Pacific Space Community Council; 2023 Mar 6 [cited 2024 Nov 24]. Available from: https://apscc.or.kr/2023-1/.

[12]

Chen Q, Chen X, Huang K.FedMeld: a model-dispersal federated learning framework for space–ground integrated networks.2024. arXiv: 2412.17231.

[13]

Lan Q, Zeng Q, Popovski P, Gündüz D, Huang K.Progressive feature transmission for split classification at the wireless edge.IEEE Trans Wirel Commun 2023; 22(6):3837-3852.

[14]

Wu H, Zeng Q, Huang K.Efficient multiuser AI downloading via reusable knowledge broadcasting.IEEE Trans Wirel Commun 2024; 23(8):10459-10472.

[15]

Qu G, Lin Z, Chen Q, Li J, Liu F, Chen X, et al.TrimCaching: parameter-sharing edge caching for AI model downloading.2024. ar Xiv:2404.14204v2.

AI Summary AI Mindmap
PDF (1286KB)

572

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/