Engineered Bacterial Extracellular Vesicles: Developments, Challenges, and Opportunities

Qiqiong Li , Xinyang Chen , Junhua Xie , Shaoping Nie

Engineering ›› 2025, Vol. 54 ›› Issue (11) : 291 -307.

PDF (1865KB)
Engineering ›› 2025, Vol. 54 ›› Issue (11) : 291 -307. DOI: 10.1016/j.eng.2025.06.042
Review

Engineered Bacterial Extracellular Vesicles: Developments, Challenges, and Opportunities

Author information +
History +
PDF (1865KB)

Abstract

The abundant microbe-associated molecular patterns (MAMPs) and nanoscale structures of bacterial extracellular vesicles (bEVs) collectively facilitate their versatile biological activities. Building on these inherent properties, engineering methods encompassing physical, chemical, and genetic modifications have been strategically employed to enhance the functional diversity of bEVs. Therefore, bEVs are being explored as innovative and promising platforms for developing immunotherapeutic strategies targeting diverse pathological states. To establish a foundational understanding of bEVs, we first summarized their biogenesis, classification, structures and biomolecular constituents of bEVs. This review discusses techniques for bEV production and modification and explores the immunological characteristics and effects of engineered bEVs, along with their biomedical applications. Special attention is devoted to advanced engineering approaches and outlining the challenges and emerging avenues in the development of engineered bEVs. This review aims to systematically construct an evidence-based and comprehensive framework that promotes translational optimization and clinical implementation of engineered bEVs, thereby maximizing their application potential in the biomedical field.

Keywords

Bacterial extracellular vesicle / Synthetic biology / Engineering modification / Biomedical application

Cite this article

Download citation ▾
Qiqiong Li, Xinyang Chen, Junhua Xie, Shaoping Nie. Engineered Bacterial Extracellular Vesicles: Developments, Challenges, and Opportunities. Engineering, 2025, 54(11): 291-307 DOI:10.1016/j.eng.2025.06.042

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

György B, Szabó TG, Pásztói M, Pál Z, Misják P, Aradi B, et al.Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles.Cell Mol Life Sci 2011; 68(16):2667-2688.

[2]

Van G Niel, D G’Angelo, Raposo G.Shedding light on the cell biology of extracellular vesicles.Nat Rev Mol Cell Biol 2018; 19(4):213-228.

[3]

Mathieu M, Martin-Jaular L, Lavieu G, Th Céry.Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication.Nat Cell Biol 2019; 21(1):9-17.

[4]

Van G Niel, Carter DRF, Clayton A, Lambert DW, Raposo G, Vader P.Challenges and directions in studying cell–cell communication by extracellular vesicles.Nat Rev Mol Cell Biol 2022; 23(5):369-382.

[5]

Xie J, Li Q, Haesebrouck F, Van LHoecke, Vandenbroucke RE.The tremendous biomedical potential of bacterial extracellular vesicles.Trends Biotechnol 2022; 40(10):1173-1194.

[6]

Briaud P, Carroll RK.Extracellular vesicle biogenesis and functions in Gram-positive bacteria.Infect Immun 2020; 88(12):e00433-e520.

[7]

Schwechheimer C, Kuehn MJ.Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions.Nat Rev Microbiol 2015; 13(10):605-619.

[8]

Meng F, Wang G, Zhou F, Li G, Wang M, Zhou Z, et al.Exosomes from young plasma alleviate osteoporosis through miR-217-5p-regulated osteogenesis of bone marrow mesenchymal stem cell.Compos B Eng 2024; 276:111358.

[9]

Xie J, Li Q, Nie S.Bacterial extracellular vesicles: an emerging postbiotic.Trends Food Sci Technol 2024; 143:104275.

[10]

Wang S, Gao J, Li M, Wang L, Wang Z.A facile approach for development of a vaccine made of bacterial double-layered membrane vesicles (DMVs).Biomaterials 2018; 187:28-38.

[11]

Kim OY, Choi SJ, Jang SC, Park KS, Kim SR, Choi JP, et al.Bacterial protoplast-derived nanovesicles as vaccine delivery system against bacterial infection.Nano Lett 2015; 15(1):266-274.

[12]

Li W, Hu Y, Zhang Q, Hua L, Yang Z, Ren Z, et al.Development of drug-resistant Klebsiella pneumoniae vaccine via novel vesicle production technology.ACS Appl Mater Interfaces 2021; 13(28):32703-32715.

[13]

Park KS, Svennerholm K, Crescitelli R, Lässer C, Gribonika I, Lötvall J.Synthetic bacterial vesicles combined with tumour extracellular vesicles as cancer immunotherapy.J Extracell Vesicles 2021; 10(9):e12120.

[14]

Toyofuku M, Nomura N, Eberl L.Types and origins of bacterial membrane vesicles.Nat Rev Microbiol 2019; 17(1):13-24.

[15]

Hong J, Dauros-Singorenko P, Whitcombe A, Payne L, Blenkiron C, Phillips A, et al.Analysis of the Escherichia coli extracellular vesicle proteome identifies markers of purity and culture conditions.J Extracell Vesicles 2019; 8(1):1632099.

[16]

Tulkens J, De OWever, Hendrix A.Analyzing bacterial extracellular vesicles in human body fluids by orthogonal biophysical separation and biochemical characterization.Nat Protoc 2020; 15(1):40-67.

[17]

Bhar S, Edelmann MJ, Jones MK.Characterization and proteomic analysis of outer membrane vesicles from a commensal microbe, Enterobacter cloacae.J Proteomics 2021; 231:103994.

[18]

Herrmann IK, Wood MJA, Fuhrmann G.Extracellular vesicles as a next-generation drug delivery platform.Nat Nanotechnol 2021; 16(7):748-759.

[19]

Yang J, Kim EK, McDowell A, Kim YK.Microbe-derived extracellular vesicles as a smart drug delivery system.Transl Clin Pharmacol 2018; 26(3):103-110.

[20]

Hald C Albertsen, Kulkarni JA, Witzigmann D, Lind M, Petersson K, Simonsen JB.The role of lipid components in lipid nanoparticles for vaccines and gene therapy.Adv Drug Deliv Rev 2022; 188:114416.

[21]

Vader P, Mol EA, Pasterkamp G, Schiffelers RM.Extracellular vesicles for drug delivery.Adv Drug Deliv Rev 2016; 106:148-156.

[22]

Liu H, Zhang H, Han Y, Hu Y, Geng Z, Su J.Bacterial extracellular vesicles-based therapeutic strategies for bone and soft tissue tumors therapy.Theranostics 2022; 12(15):6576-6594.

[23]

Gonzalez-Lozano E, Garcia-Garcia J, Galvez J, Hidalgo-Garcia L, Rodriguez-Nogales A, Rodriguez-Cabezas ME, et al.Novel Horizons in postbiotics: Lactobacillaceae extracellular vesicles and their applications in health and disease.Nutrients 2022; 14(24):5296.

[24]

Croatti V, Parolin C, Giordani B, Foschi C, Fedi S, Vitali B.Lactobacilli extracellular vesicles: potential postbiotics to support the vaginal microbiota homeostasis.Microb Cell Fact 2022; 21(1):237.

[25]

Ashrafian F, Behrouzi A, Shahriary A, Ahmadi SBadi, Davari M, Khatami S, et al.Comparative study of effect of Akkermansia muciniphila and its extracellular vesicles on toll-like receptors and tight junction.Gastroenterol Hepatol Bed Bench 2019; 12(2):163-168.

[26]

Kang CS, Ban M, Choi EJ, Moon HG, Jeon JS, Kim DK, et al.Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis.PLoS One 2013; 8(10):e76520.

[27]

Shi Y, Meng L, Zhang C, Zhang F, Fang Y.Extracellular vesicles of Lacticaseibacillus paracasei PC-H1 induce colorectal cancer cells apoptosis via PDK1/AKT/Bcl-2 signaling pathway.Microbiol Res 2021; 255:126921.

[28]

Palomino RAN, Vanpouille C, Laghi L, Parolin C, Melikov K, Backlund P, et al.Extracellular vesicles from symbiotic vaginal Lactobacilli inhibit HIV-1 infection of human tissues.Nat Commun 2019; 10:5656.

[29]

Li M, Lee K, Hsu M, Nau G, Mylonakis E, Ramratnam B.Lactobacillus-derived extracellular vesicles enhance host immune responses against vancomycin-resistant enterococci.BMC Microbiol 2017; 17:66.

[30]

Palomino RAN, Vanpouille C, Costantini PE, Margolis L.Microbiota-host communications: bacterial extracellular vesicles as a common language.PLoS Pathog 2021; 17(5):e1009508.

[31]

Nie X, Li Q, Chen X, Onyango S, Xie J, Nie S.Bacterial extracellular vesicles: vital contributors to physiology from bacteria to host.Microbiol Res 2024; 284:127733.

[32]

Gill S, Catchpole R, Forterre P.Extracellular membrane vesicles in the three domains of life and beyond.FEMS Microbiol Rev 2019; 43(3):273-303.

[33]

Guerrero-Mandujano A, Hernandez-Cortez C, Ibarra JA, Castro-Escarpulli G.The outer membrane vesicles: secretion system type zero.Traffic 2017; 18(7):425-432.

[34]

Toyofuku M, Schild S, Kaparakis-Liaskos M, Eberl L.Composition and functions of bacterial membrane vesicles.Nat Rev Microbiol 2023; 21(7):415-430.

[35]

Bos MP, Robert V, Tommassen J.Biogenesis of the Gram-negative bacterial outer membrane.Annu Rev Microbiol 2007; 61(1):191-214.

[36]

Avila-Calderon ED, Ruiz-Palma MDS, Aguilera-Arreola MG, Velazquez-Guadarrama N, Ruiz EA, Gomez-Lunar Z, et al.Outer membrane vesicles of Gram-negative bacteria: an outlook on biogenesis.Front Microbiol 2021; 12:557902.

[37]

O M’Ryan, Stoddard J, Toneatto D, Wassil J, Dull PM.A multi-component meningococcal serogroup B vaccine (4CMenB): the clinical development program.Drugs 2014; 74(1):15-30.

[38]

Long Q, Zheng P, Zheng X, Li W, Hua L, Yang Z, et al.Engineered bacterial membrane vesicles are promising carriers for vaccine design and tumor immunotherapy.Adv Drug Deliv Rev 2022; 186:114321.

[39]

Brown L, Wolf JM, Prados-Rosales R, Casadevall A.Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi.Nat Rev Microbiol 2015; 13(10):620-630.

[40]

Xie J, Haesebrouck F, Van LHoecke, Vandenbroucke RE.Bacterial extracellular vesicles: an emerging avenue to tackle diseases.Trends Microbiol 2023; 31(12):1206-1224.

[41]

Brown L, Kessler A, Cabezas-Sanchez P, Luque-Garcia JL, Casadevall A.Extracellular vesicles produced by the Gram-positive bacterium Bacillus subtilis are disrupted by the lipopeptide surfactin.Mol Microbiol 2014; 93(1):183-198.

[42]

Lee JH, Choi CW, Lee T, Kim SI, Lee JC, Shin JH.Transcription factor σB plays an important role in the production of extracellular membrane-derived vesicles in Listeria monocytogenes.PLoS One 2013; 8(8):e73196.

[43]

Obana N, Nakao R, Nagayama K, Nakamura K, Senpuku H, Nomura N.Immunoactive Clostridial membrane vesicle production is regulated by a sporulation factor.Infect Immun 2017; 85(5):e00096-e117.

[44]

Resch U, Tsatsaronis JA, Le ARhun, Stubiger G, Rohde M, Kasvandik S, et al.A two-component regulatory system impacts extracellular membrane-derived vesicle production in group A Streptococcus. MBio, 7 (6) (2016)

[45]

Wang X, Thompson CD, Weidenmaier C, Lee JC.Release of Staphylococcus aureus extracellular vesicles and their application as a vaccine platform.Nat Commun 2018; 9:1379.

[46]

Deatherage BL, Cookson BT.Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life.Infect Immun 2012; 80(6):1948-1957.

[47]

Gao J, Su Y, Wang Z.Engineering bacterial membrane nanovesicles for improved therapies in infectious diseases and cancer.Adv Drug Deliv Rev 2022; 186:114340.

[48]

Park KS, Svennerholm K, Crescitelli R, Lässer C, Gribonika I, Andersson M, et al.Detoxified synthetic bacterial membrane vesicles as a vaccine platform against bacteria and SARS-CoV-2.J Nanobiotechnology 2023; 21(1):156.

[49]

Fan X, Wang F, Zhou X, Chen B, Chen G.Size-dependent antibacterial immunity of Staphylococcus aureus protoplast-derived particulate vaccines.Int J Nanomed 2020; 15:10321-10330.

[50]

Liu G, Huang W, Chen L, Tayier N, You L, Hamza M, et al.Commensal bacterial hybrid nanovesicles improve immune checkpoint therapy in pancreatic cancer through immune and metabolic reprogramming.Nano Today 2023; 52:101993.

[51]

Liu H, Li MM, Zhang T, Liu XR, Zhang H, Geng Z, et al.Engineered bacterial extracellular vesicles for osteoporosis therapy.Che Eng J (NY) 2022; 450:138309.

[52]

Liu H, Geng Z, Su J.Engineered mammalian and bacterial extracellular vesicles as promising nanocarriers for targeted therapy.Extracell Vesicles Circ Nucl Acids 2022; 3(2):63-86.

[53]

Gerritzen MJH, Martens DE, Uittenbogaard JP, Wijffels RH, Stork M.Sulfate depletion triggers overproduction of phospholipids and the release of outer membrane vesicles by Neisseria meningitidis.Sci Rep 2019; 9:4716.

[54]

Zingl FG, Kohl P, Cakar F, Leitner DR, Mitterer F, Bonnington KE, et al.Outer membrane vesiculation facilitates surface exchange and in vivo adaptation of Vibrio cholerae.Cell Host Microbe 2020; 27(2):225-237.e8.

[55]

Van B de Waterbeemd, Zomer G, van Jden Ijssel, van LKeulen, Eppink MH, van Pder Ley, et al.Cysteine depletion causes oxidative stress and triggers outer membrane vesicle release by Neisseria meningitidis; implications for vaccine development.PLoS One 2013; 8(1):e54314.

[56]

Mashburn-Warren L, Howe J, Garidel P, Richter W, Steiniger F, Roessle M, et al.Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation.Mol Microbiol 2008; 69(2):491-502.

[57]

McMahon KJ, Castelli ME, Vescovi EG, Feldman MF.Biogenesis of outer membrane vesicles in Serratia marcescens is thermoregulated and can be induced by activation of the Rcs phosphorelay system.J Bacteriol 2012; 194(12):3241-3249.

[58]

Bonnington KE, Kuehn MJ.Outer membrane vesicle production facilitates LPS remodeling and outer membrane maintenance in Salmonella during environmental transitions. MBio, 7 (5) (2016)

[59]

Gerritzen MJH, Maas RHW, van Jden Ijssel, van LKeulen, Martens DE, Wijffels RH, et al.High dissolved oxygen tension triggers outer membrane vesicle formation by Neisseria meningitidis.Microb Cell Fact 2018; 17:157.

[60]

Roberts R, Moreno G, Bottero D, Gaillard ME, Fingermann M, Graieb A, et al.Outer membrane vesicles as acellular vaccine against pertussis.Vaccine 2008; 26(36):4639-4646.

[61]

Asensio CJA, Gaillard ME, Moreno G, Bottero D, Zurita E, Rumbo M, et al.Outer membrane vesicles obtained from Bordetella pertussis Tohama expressing the lipid A deacylase PagL as a novel acellular vaccine candidate.Vaccine 2011; 29(8):1649-1656.

[62]

Bottero D, Zurita ME, Gaillard ME, Bartel E, Vercellini C, Hozbor D.Membrane vesicles derived from Bordetella bronchiseptica: active constituent of a new vaccine against infections caused by this pathogen. Appl Environ Microbiol, 84 (4) (2018)

[63]

Gamalier JP, Silva TP, Zarantonello V, Dias FF, Melo RC.Increased production of outer membrane vesicles by cultured freshwater bacteria in response to ultraviolet radiation.Microbiol Res 2017; 194:38-46.

[64]

Liang D, Liu C, Li Y, Wu C, Chen Y, Tan M, et al.Engineering fucoxanthin-loaded probiotics’ membrane vesicles for the dietary intervention of colitis.Biomaterials 2023; 297:122107.

[65]

Liang D, Liu C, Li J, Li Y, Li J, Tan M, et al.Engineering probiotics-derived membrane vesicles for encapsulating fucoxanthin: evaluation of stability, bioavailability, and biosafety.Food Funct 2023; 14(8):3475-3487.

[66]

Elhenawy W, Bording-Jorgensen M, Valguarnera E, Haurat MF, Wine E, Feldman MF.LPS remodeling triggers formation of outer membrane vesicles in Salmonella.MBio 2016; 7(4):e00940-e01016.

[67]

Van B de Waterbeemd, Streefland M, van Pder Ley, Zomer B, van HDijken, Martens D, et al.Improved OMV vaccine against Neisseria meningitidis using genetically engineered strains and a detergent-free purification process.Vaccine 2010; 28(30):4810-4816.

[68]

Clifton LA, Skoda MW, Le APBrun, Ciesielski F, Kuzmenko I, Holt SA, et al.Effect of divalent cation removal on the structure of Gram-negative bacterial outer membrane models.Langmuir 2015; 31(1):404-412.

[69]

Thomas KJ, Rice CV.Revised model of calcium and magnesium binding to the bacterial cell wall.Biometals 2014; 27(6):1361-1370.

[70]

Bauwens A, Kunsmann L, Karch H, Mellmann A, Bielaszewska M.Antibiotic-mediated modulations of outer membrane vesicles in enterohemorrhagic Escherichia coli O104:H4 and O157:H7.Antimicrob Agents Chemother 2017; 61(9):e00937-e01017.

[71]

Yun SH, Park EC, Lee SY, Lee H, Choi CW, Yi YS, et al.Antibiotic treatment modulates protein components of cytotoxic outer membrane vesicles of multidrug-resistant clinical strain, Acinetobacter baumannii DU202.Clin Proteomics 2018; 15:28.

[72]

Maredia R, Devineni N, Lentz P, Dallo SF, Yu JJ, Guentzel N, et al.Vesiculation from Pseudomonas aeruginosa under SOS.Sci World J 2012; 2012:402919.

[73]

Kesavan D, Vasudevan A, Wu L, Chen J, Su Z, Wang S, et al.Integrative analysis of outer membrane vesicles proteomics and whole-cell transcriptome analysis of eravacycline induced Acinetobacter baumannii strains.BMC Microbiol 2020; 20(1):31.

[74]

Manning AJ, Kuehn MJ.Contribution of bacterial outer membrane vesicles to innate bacterial defense.BMC Microbiol 2011; 11:258.

[75]

Balhuizen MD, Versluis CM, van RMHarten, de EFJonge, Brouwers JF, van CHAde Lest, et al.PMAP-36 reduces the innate immune response induced by Bordetella bronchiseptica-derived outer membrane vesicles.Curr Res Microb Sci 2021; 2:100010.

[76]

Micoli F, Alfini R, Di RBenedetto, Necchi F, Schiavo F, Mancini F, et al.GMMA is a versatile platform to design effective multivalent combination vaccines.Vaccines 2020; 8(3):540.

[77]

Siadat SD, Vaziri F, Eftekhary M, Karbasian M, Moshiri A, Aghasadeghi MR, et al.Preparation and evaluation of a new lipopolysaccharide-based conjugate as a vaccine candidate for Brucellosis.Osong Public Health Res Perspect 2015; 6(1):9-13.

[78]

Gerke C, Colucci AM, Giannelli C, Sanzone S, Vitali CG, Sollai L, et al.Production of a Shigella sonnei vaccine based on generalized modules for membrane antigens (GMMA), 1790GAHB.PLoS One 2015; 10(8):e0134478.

[79]

Di R Benedetto, Alfini R, Carducci M, Aruta MG, Lanzilao L, Acquaviva A, et al.Novel simple conjugation chemistries for decoration of GMMA with heterologous antigens.Int J Mol Sci 2021; 22(19):10180.

[80]

van HBV Saparoea, Houben D, Kuijl C, Luirink J, Jong WSP.Combining protein ligation systems to expand the functionality of semi-synthetic outer membrane vesicle nanoparticles.Front Microbiol 2020; 11:890.

[81]

Cheng K, Zhao R, Li Y, Qi Y, Wang Y, Zhang Y, et al.Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via Plug-and-Display technology.Nat Commun 2021; 12(1):2041.

[82]

Peng L, Wang M, Chu Y, Zhang L, Niu J, Shao H, et al.Engineering bacterial outer membrane vesicles as transdermal nanoplatforms for photo-TRAIL-programmed therapy against melanoma.Sci Adv 2020; 6(27):eaba2735.

[83]

Chen S, Sun F, Qian H, Xu W, Jiang J.Preconditioning and engineering strategies for improving the efficacy of mesenchymal stem cell-derived exosomes in cell-free therapy.Stem Cells Int 2022; 2022:1779346.

[84]

Wang D, Liu C, You S, Zhang K, Li M, Cao Y, et al.Bacterial vesicle-cancer cell hybrid membrane-coated nanoparticles for tumor specific immune activation and photothermal therapy.ACS Appl Mater Interfaces 2020; 12(37):41138-41147.

[85]

Li M, Zhou H, Jiang W, Yang C, Miao H, Wang Y.Nanovaccines integrating endogenous antigens and pathogenic adjuvants elicit potent antitumor immunity.Nano Today 2020; 35:101007.

[86]

Chen G, Bai Y, Li Z, Wang F, Fan X, Zhou X.Bacterial extracellular vesicle-coated multi-antigenic nanovaccines protect against drug-resistant Staphylococcus aureus infection by modulating antigen processing and presentation pathways.Theranostics 2020; 10(16):7131-7149.

[87]

Chen Q, Bai H, Wu W, Huang G, Li Y, Wu M, et al.Bioengineering bacterial vesicle-coated polymeric nanomedicine for enhanced cancer immunotherapy and metastasis prevention.Nano Lett 2020; 20(1):11-21.

[88]

Gu TW, Wang MZ, Niu J, Chu Y, Guo KR, Peng LH.Outer membrane vesicles derived from E. coli as novel vehicles for transdermal and tumor targeting delivery.Nanoscale 2020; 12(36):18965-18977.

[89]

Qing S, Lyu C, Zhu L, Pan C, Wang S, Li F, et al.Biomineralized bacterial outer membrane vesicles potentiate safe and efficient tumor microenvironment reprogramming for anticancer therapy.Adv Mater 2020; 32(47):e2002085.

[90]

Chu D, Dong X, Zhao Q, Gu J, Wang Z.Photosensitization priming of tumor microenvironments improves delivery of nanotherapeutics via neutrophil infiltration.Adv Mater 2017; 29(27):1701021.

[91]

Li M, Li S, Zhou H, Tang X, Wu Y, Jiang W, et al.Chemotaxis-driven delivery of nano-pathogenoids for complete eradication of tumors post-phototherapy.Nat Commun 2020; 11(1):1126.

[92]

Wu G, Ji H, Guo X, Li Y, Ren T, Dong H, et al.Nanoparticle reinforced bacterial outer-membrane vesicles effectively prevent fatal infection of carbapenem-resistant Klebsiella pneumoniae.Nanomedicine 2020; 24:102148.

[93]

Shi J, Ma Z, Pan H, Liu Y, Chu Y, Wang J, et al.Biofilm-encapsulated nano drug delivery system for the treatment of colon cancer.J Microencapsul 2020; 37(7):481-491.

[94]

Kuhn T, Koch M, Fuhrmann G.Probiomimetics-novel Lactobacillus-mimicking microparticles show anti-inflammatory and barrier-protecting effects in gastrointestinal models.Small 2020; 16(40):e2003158.

[95]

Noroozi N, Gargari SLM, Nazarian S, Sarvary S, Adriani RR.Immunogenicity of enterotoxigenic Escherichia coli outer membrane vesicles encapsulated in chitosan nanoparticles.Iran J Basic Med Sci 2018; 21(3):284-291.

[96]

Matias J, Pastor Y, Irache JM, Gamazo C.Protective passive immunity in Escherichia coli ETEC-challenged neonatal mice conferred by orally immunized dams with nanoparticles containing homologous outer membrane vesicles.Vaccines 2020; 8(2):286.

[97]

Matias J, Brotons A, Cenoz S, Perez I, Abdulkarim M, Gumbleton M, et al.Oral immunogenicity in mice and sows of enterotoxigenic Escherichia coli outer-membrane vesicles incorporated into zein-based nanoparticles.Vaccines 2019; 8(1):11.

[98]

Gao F, Xu L, Yang B, Fan F, Yang L.Kill the real with the fake: eliminate intracellular Staphylococcus aureus using nanoparticle coated with its extracellular vesicle membrane as active-targeting drug carrier.ACS Infect Dis 2019; 5(2):218-227.

[99]

Zhang Y, Chen Y, Lo C, Zhuang J, Angsantikul P, Zhang Q, et al.Inhibition of pathogen adhesion by bacterial outer membrane-coated nanoparticles.Angew Chem Int Ed Engl 2019; 58(33):11404-11408.

[100]

Stevenson TC, Cywes-Bentley C, Moeller TD, Weyant KB, Putnam D, Chang YF, et al.Immunization with outer membrane vesicles displaying conserved surface polysaccharide antigen elicits broadly antimicrobial antibodies.Proc Natl Acad Sci USA 2018; 115(14):E3106-E3115.

[101]

Schwechheimer C, Kulp A, Kuehn MJ.Modulation of bacterial outer membrane vesicle production by envelope structure and content.BMC Microbiol 2014; 14:324.

[102]

McBroom AJ, Kuehn MJ.Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response.Mol Microbiol 2007; 63(2):545-558.

[103]

Premjani V, Tilley D, Gruenheid S, Le HMoual, Samis JA.Enterohemorrhagic Escherichia coli OmpT regulates outer membrane vesicle biogenesis.FEMS Microbiol Lett 2014; 355(2):185-192.

[104]

Moon DC, Choi CH, Lee JH, Choi CW, Kim HY, Park JS, et al.Acinetobacter baumannii outer membrane protein A modulates the biogenesis of outer membrane vesicles.J Microbiol 2012; 50(1):155-160.

[105]

Salverda ML, Meinderts SM, Hamstra HJ, Wagemakers A, Hovius JW, van Ader Ark, et al.Surface display of a borrelial lipoprotein on meningococcal outer membrane vesicles.Vaccine 2016; 34(8):1025-1033.

[106]

Matthias KA, Reveille A, Connolly KL, Jerse AE, Gao YMS, Bash MC.Deletion of major porins from meningococcal outer membrane vesicle vaccines enhances reactivity against heterologous serogroup B Neisseria meningitidis strains.Vaccine 2020; 38(10):2396-2405.

[107]

Muralinath M, Kuehn MJ, Roland KL, Curtiss R.Immunization with Salmonella enterica serovar Typhimurium-derived outer membrane vesicles delivering the pneumococcal protein PspA confers protection against challenge with Streptococcus pneumoniae.Infect Immun 2011; 79(2):887-894.

[108]

Gasperini G, Alfini R, Arato V, Mancini F, Aruta MG, Kanvatirth P, et al.Salmonella paratyphi A outer membrane vesicles displaying Vi polysaccharide as a multivalent vaccine against enteric fever.Infect Immun 2021; 89(4):e00699-e00720.

[109]

Liu Q, Tan K, Yuan J, Song K, Li R, Huang X, et al.Flagellin-deficient outer membrane vesicles as adjuvant induce cross-protection of Salmonella Typhimurium outer membrane proteins against infection by heterologous Salmonella serotypes.Int J Med Microbiol 2018; 308(7):796-802.

[110]

Chen Y, Jie K, Li B, Yu H, Ruan H, Wu J, et al.Immunization with outer membrane vesicles derived from major outer membrane protein-deficient Salmonella Typhimurium mutants for cross protection against Salmonella enteritidis and svian pathogenic Escherichia coli O78 infection in chickens.Front Microbiol 2020; 11:588952.

[111]

Jiang L, Driedonks TAP, Jong WSP, Dhakal S, van HBden Berg van Saparoea, Sitaras I, et al.A bacterial extracellular vesicle-based intranasal vaccine against SARS-CoV-2 protects against disease and elicits neutralizing antibodies to wild-type and Delta variants.J Extracell Vesicles 2022; 11(3):e12192.

[112]

Thapa HB, Muller AM, Camilli A, Schild S.An intranasal vaccine based on outer membrane vesicles against SARS-CoV-2.Front Microbiol 2021; 12:752739.

[113]

van PA der Ley, Zariri A, van ERiet, Oosterhoff D, Kruiswijk CP.An intranasal OMV-based vaccine induces high mucosal and systemic protecting immunity against a SARS-CoV-2 infection.Front Immunol 2021; 12:781280.

[114]

Jong WS, Daleke-Schermerhorn MH, Vikstrom D, ten CMHagen-Jongman, de KPunder, van NNder Wel, et al.An autotransporter display platform for the development of multivalent recombinant bacterial vector vaccines.Microb Cell Fact 2014; 13:162.

[115]

Daleke-Schermerhorn MH, Felix T, Soprova Z, Ten CMHagen-Jongman, Vikstrom D, Majlessi L, et al.Decoration of outer membrane vesicles with multiple antigens by using an autotransporter approach.Appl Environ Microbiol 2014; 80(18):5854-5865.

[116]

Huang W, Wang S, Yao Y, Xia Y, Yang X, Li K, et al.Employing Escherichia coli-derived outer membrane vesicles as an antigen delivery platform elicits protective immunity against Acinetobacter baumannii infection.Sci Rep 2016; 6:37242.

[117]

Yang Z, Hua L, Yang M, Liu S, Shen J, Li W, et al.RBD-modified bacterial vesicles elicited potential protective immunity against SARS-CoV-2.Nano Lett 2021; 21(14):5920-5930.

[118]

Watkins HC, Rappazzo CG, Higgins JS, Sun X, Brock N, Chau A, et al.Safe recombinant outer membrane vesicles that display M2e elicit heterologous influenza protection.Mol Ther 2017; 25(4):989-1002.

[119]

Kim SH, Kim KS, Lee SR, Kim E, Kim MS, Lee EY, et al.Structural modifications of outer membrane vesicles to refine them as vaccine delivery vehicles.BBA-Biomembranes 2009; 1788(10):2150-2159.

[120]

Price NL, Goyette-Desjardins G, Nothaft H, Valguarnera E, Szymanski CM, Segura M, et al.Glycoengineered outer membrane vesicles: a novel platform for bacterial vaccines.Sci Rep 2016; 6:24931.

[121]

Nakao R, Kobayashi H, Iwabuchi Y, Kawahara K, Hirayama S, Ramstedt M, et al.A highly immunogenic vaccine platform against encapsulated pathogens using chimeric probiotic Escherichia coli membrane vesicles.npj Vaccines 2022; 7(1):153.

[122]

Li Y, Zhao R, Cheng K, Zhang K, Wang Y, Zhang Y, et al.Bacterial outer membrane vesicles presenting programmed death 1 for improved cancer immunotherapy via immune activation and checkpoint inhibition.ACS Nano 2020; 14(12):16698-16711.

[123]

Grandi A, Tomasi M, Zanella I, Ganfini L, Caproni E, Fantappie L, et al.Synergistic protective activity of tumor-specific epitopes engineered in bacterial outer membrane vesicles.Front Oncol 2017; 7:253.

[124]

Huang W, Shu C, Hua L, Zhao Y, Xie H, Qi J, et al.Modified bacterial outer membrane vesicles induce autoantibodies for tumor therapy.Acta Biomater 2020; 108:300-312.

[125]

Chen L, Valentine JL, Huang CJ, Endicott CE, Moeller TD, Rasmussen JA, et al.Outer membrane vesicles displaying engineered glycotopes elicit protective antibodies.Proc Natl Acad Sci USA 2016; 113(26):E3609-E3618.

[126]

Zanella I, Konig E, Tomasi M, Gagliardi A, Frattini L, Fantappie L, et al.Proteome-minimized outer membrane vesicles from Escherichia coli as a generalized vaccine platform.J Extracell Vesicles 2021; 10(4):e12066.

[127]

Fantappie L, de MSantis, Chiarot E, Carboni F, Bensi G, Jousson O, et al.Antibody-mediated immunity induced by engineered Escherichia coli OMVs carrying heterologous antigens in their lumen.J Extracell Vesicles 2014; 3(1):24015.

[128]

Bartolini E, Ianni E, Frigimelica E, Petracca R, Galli G, Scorza FB, et al.Recombinant outer membrane vesicles carrying Chlamydia muridarum HtrA induce antibodies that neutralize chlamydial infection in vitro.J Extracell Vesicles 2013; 2(1):20181.

[129]

Hua L, Yang Z, Li W, Zhang Q, Ren Z, Ye C, et al.A novel immunomodulator delivery platform based on bacterial biomimetic vesicles for enhanced antitumor immunity.Adv Mater 2021; 33(43):2103923.

[130]

Shehata MM, Mostafa A, Teubner L, Mahmoud SH, Kandeil A, Elshesheny R, et al.Bacterial outer membrane vesicles (OMVs)-based dual vaccine for influenza a H1N1 virus and MERS-CoV.Vaccines 2019; 7(2):46.

[131]

Shim SM, Song EJ, Song D, Lee TY, Kim DJ, Nam JH, et al.Nontoxic outer membrane vesicles efficiently increase the efficacy of an influenza vaccine in mice and ferrets.Vaccine 2017; 35(30):3741-3748.

[132]

Lee TY, Kim CU, Lee P, Seo SH, Bae EH, Kim YS, et al.Outer membrane vesicle increases the efficacy of an influenza vaccine in a diet-induced obese mouse model.Immunol Lett 2020; 219:27-33.

[133]

Liu H, Zhang H, Wang S, Cui J, Weng W, Liu X, et al.Bone-targeted bioengineered bacterial extracellular vesicles delivering siRNA to ameliorate osteoporosis.Compos B Eng 2023; 255:110610.

[134]

Wo J, Lv ZY, Sun JN, Tang H, Qi N, Ye BC.Engineering probiotic-derived outer membrane vesicles as functional vaccine carriers to enhance immunity against SARS-CoV-2.iScience 2023; 26(1):105772.

[135]

Liu Y, Chen J, Raj K, Baerg L, Nathan N, Philpott DJ, et al.A universal strategy to promote secretion of G+/G− bacterial extracellular vesicles and its application in host innate immune responses.ACS Synth Biol 2023; 12(1):319-328.

[136]

Schild S, Nelson EJ, Bishop AL, Camilli A.Characterization of Vibrio cholerae outer membrane vesicles as a candidate vaccine for cholera.Infect Immun 2009; 77(1):472-484.

[137]

Micoli F, Rondini S, Alfini R, Lanzilao L, Necchi F, Negrea A, et al.Comparative immunogenicity and efficacy of equivalent outer membrane vesicle and glycoconjugate vaccines against nontyphoidal Salmonella.Proc Natl Acad Sci USA 2018; 115(41):10428-10433.

[138]

Irene C, Fantappie L, Caproni E, Zerbini F, Anesi A, Tomasi M, et al.Bacterial outer membrane vesicles engineered with lipidated antigens as a platform for Staphylococcus aureus vaccine.Proc Natl Acad Sci USA 2019; 116(43):21780-21788.

[139]

Yuan J, Yang J, Hu Z, Yang Y, Shang W, Hu Q, et al.Safe staphylococcal platform for the development of multivalent nanoscale vesicles against viral infections.Nano Lett 2018; 18(2):725-733.

[140]

Carvalho AL, Fonseca S, Miquel-Clopes A, Cross K, Kok KS, Wegmann U, et al.Bioengineering commensal bacteria-derived outer membrane vesicles for delivery of biologics to the gastrointestinal and respiratory tract.J Extracell Vesicles 2019; 8(1):1632100.

[141]

Carvalho AL, Miquel-Clopes A, Wegmann U, Jones E, Stentz R, Telatin A, et al.Use of bioengineered human commensal gut bacteria-derived microvesicles for mucosal plague vaccine delivery and immunization.Clin Exp Immunol 2019; 196(3):287-304.

[142]

Roier S, Zingl FG, Cakar F, Durakovic S, Kohl P, Eichmann TO, et al.A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria.Nat Commun 2016; 7:10515.

[143]

Mozaheb N, Mingeot-Leclercq MP.Membrane vesicle production as a bacterial defense against stress.Front Microbiol 2020; 11:600221.

[144]

Gerritzen MJH, Stangowez L, van Bde Waterbeemd, Martens DE, Wijffels RH, Stork M.Continuous production of Neisseria meningitidis outer membrane vesicles.Appl Microbiol Biotechnol 2019; 103(23–24):9401-9410.

[145]

Van L der Pol, Stork M, van Pder Ley.Outer membrane vesicles as platform vaccine technology.Biotechnol J 2015; 10(11):1689-1706.

[146]

van B de Waterbeemd, Zomer G, Kaaijk P, Ruiterkamp N, Wijffels RH, van GPJMden Dobbelsteen, et al.Improved production process for native outer membrane vesicle vaccine against Neisseria meningitidis.PLoS One 2013; 8(5):e65157.

[147]

Collins BS.Gram-negative outer membrane vesicles in vaccine development.Discov Med 2011; 12(62):7-15.

[148]

Dauros P Singorenko, Chang V, Whitcombe A, Simonov D, Hong J, Phillips A, et al.Isolation of membrane vesicles from prokaryotes: a technical and biological comparison reveals heterogeneity.J Extracell Vesicles 2017; 6:1324731.

[149]

Qiao L, Rao Y, Zhu K, Rao X, Zhou R.Engineered remolding and application of bacterial membrane vesicles.Front Microbiol 2021; 12:729369.

[150]

Balhuizen MD, Veldhuizen EJA, Haagsman HP.Outer membrane vesicle induction and isolation for vaccine development.Front Microbiol 2021; 12:629090.

[151]

Schwechheimer C, Kuehn MJ.Synthetic effect between envelope stress and lack of outer membrane vesicle production in Escherichia coli.J Bacteriol 2013; 195(18):4161-4173.

[152]

Perez-Cruz C, Canas MA, Gimenez R, Badia J, Mercade E, Baldoma L, et al.Membrane vesicles released by a hypervesiculating Escherichia coli nissle 1917 tolR mutant are highly heterogeneous and show reduced capacity for epithelial cell interaction and entry.PLoS One 2016; 11(12):e0169186.

[153]

Takaki K, Tahara YO, Nakamichi N, Hasegawa Y, Shintani M, Ohkuma M, et al.Multilamellar and multivesicular outer membrane vesicles produced by a Buttiauxella agrestis tolB mutant. Appl Environ Microbiol, 86 (20) (2020)

[154]

Chen Q, Huang G, Wu W, Wang J, Hu J, Mao J, et al.A hybrid eukaryotic-prokaryotic nanoplatform with photothermal modality for enhanced antitumor vaccination.Adv Mater 2020; 32(16):1908185.

[155]

Fang RH, Kroll AV, Gao W, Zhang L.Cell membrane coating nanotechnology.Adv Mater 2018; 30(23):e1706759.

[156]

Gao W, Fang RH, Thamphiwatana S, Luk BT, Li J, Angsantikul P, et al.Modulating antibacterial immunity via bacterial membrane-coated nanoparticles.Nano Lett 2015; 15(2):1403-1409.

[157]

Kis Z, Shattock R, Shah N, Kontoravdi C.Emerging technologies for low-cost, rapid vaccine manufacture.Biotechnol J 2019; 14(7):1970055.

[158]

Zakeri B, Fierer JO, Celik E, Chittock EC, Schwarz-Linek U, Moy VT, et al.Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin.Proc Natl Acad Sci USA 2012; 109(12):E690-E697.

[159]

Jiang LL, Luirink J, Kooijmans SAA, van KPMKessel, Jong W, van MEssen, et al.A post-insertion strategy for surface functionalization of bacterial and mammalian cell-derived extracellular vesicles.BBA-Gen Subjects 2021; 1865(4):129763.

[160]

Kesty NC, Kuehn MJ.Incorporation of heterologous outer membrane and periplasmic proteins into Escherichia coli outer membrane vesicles.J Biol Chem 2004; 279(3):2069-2076.

[161]

Sauri A, Soprova Z, Wickstrom D, de JWGier, Van RCder Schors, Smit AB, et al.The Bam (Omp85) complex is involved in secretion of the autotransporter haemoglobin protease.Microbiol-Sgm 2009; 155(12):3982-3991.

[162]

Guggenbichler F, Buttner C, Rudolph W, Zimmermann K, Gunzer F, Pohlmann C.Design of a covalently linked human interleukin-10 fusion protein and its secretory expression in Escherichia coli.Appl Microbiol Biotechnol 2016; 100(24):10479-10493.

[163]

Hyyrylainen HL, Marciniak BC, Dahncke K, Pietiainen M, Courtin P, Vitikainen M, et al.Penicillin-binding protein folding is dependent on the PrsA peptidyl-prolyl cis-trans isomerase in Bacillus subtilis.Mol Microbiol 2010; 77(1):108-127.

[164]

Kim OY, Dinh NT, Park HT, Choi SJ, Hong K, Gho YS.Bacterial protoplast-derived nanovesicles for tumor targeted delivery of chemotherapeutics.Biomaterials 2017; 113:68-79.

[165]

Valguarnera E, Feldman MF.Glycoengineered outer membrane vesicles as a platform for vaccine development.Methods Enzymol 2017; 597:285-310.

[166]

Wu M, Holgado L, Harrower RM, Brown AC.Evaluation of the efficiency of various methods to load fluoroquinolones into Escherichia coli outer membrane vesicles as a novel antibiotic delivery platform.Biochem Eng J 2024; 210:109418.

[167]

Didiot MC, Hall LM, Coles AH, Haraszti RA, Godinho BM, Chase K, et al.Exosome-mediated delivery of hydrophobically modified siRNA for huntingtin mRNA silencing.Mol Ther 2016; 24(10):1836-1847.

[168]

O AJ’Loughlin, Mäger I, de OGJong, Varela MA, Schiffelers RM, El SAndaloussi, et al.Functional delivery of lipid-conjugated siRNA by extracellular vesicles.Mol Ther 2017; 25(7):1580-1587.

[169]

Rhim WK, Kim JY, Lee SY, Cha SG, Park JM, Park HJ, et al.Recent advances in extracellular vesicle engineering and its applications to regenerative medicine.Biomater Res 2023; 27(1):130.

[170]

Guo J, Huang Z, Wang Q, Wang M, Ming Y, Chen W, et al.Opportunities and challenges of bacterial extracellular vesicles in regenerative medicine.J Nanobiotechnology 2025; 23(1):4.

[171]

Nizamudeen ZA, Xerri R, Parmenter C, Suain K, Markus R, Chakrabarti L, et al.Low-power sonication can alter extracellular vesicle size and properties.Cells 2021; 10(9):2413.

[172]

Richter M, Vader P, Fuhrmann G.Approaches to surface engineering of extracellular vesicles.Adv Drug Deliv Rev 2021; 173:416-426.

[173]

Gerritzen MJH, Martens DE, Wijffels RH, van Lder Pol, Stork M.Bioengineering bacterial outer membrane vesicles as vaccine platform.Biotechnol Adv 2017; 35(5):565-574.

[174]

Murphy DE, de OGJong, Brouwer M, Wood MJ, Lavieu G, Schiffelers RM, et al.Extracellular vesicle-based therapeutics: natural versus engineered targeting and trafficking.Exp Mol Med 2019; 51:32.

[175]

Johnson V, Vasu S, Kumar US, Kumar M.Surface-engineered extracellular vesicles in cancer immunotherapy.Cancers 2023; 15(10):2838.

[176]

Liu Q, Li D, Pan X, Liang Y.Targeted therapy using engineered extracellular vesicles: principles and strategies for membrane modification.J Nanobiotechnology 2023; 21(1):334.

[177]

Leidal AM, Debnath J.Unraveling the mechanisms that specify molecules for secretion in extracellular vesicles.Methods 2020; 177:15-26.

[178]

Raghav A, Jeong GB.A systematic review on the modifications of extracellular vesicles: a revolutionized tool of nano-biotechnology.J Nanobiotechnology 2021; 19(1):459.

[179]

Holst J, Oster P, Arnold R, Tatley M, N Læss, Aaberge I, et al.Vaccines against meningococcal serogroup B disease containing outer membrane vesicles (OMV): lessons from past programs and implications for the future.Hum Vaccin Immunother 2013; 9(6):1241-1253.

[180]

Sartorio MG, Pardue EJ, Feldman MF, Haurat MF.Bacterial outer membrane vesicles: from discovery to applications.Annu Rev Microbiol 2021; 75:609-630.

[181]

Chen DJ, Osterrieder N, Metzger SM, Buckles E, Doody AM, DeLisa MP, et al.Delivery of foreign antigens by engineered outer membrane vesicle vaccines.Proc Natl Acad Sci USA 2010; 107(7):3099-3104.

[182]

Galen E James, Zhao L, Chinchilla M, Wang YJin, Pasetti FMarcela, Green J, et al.Adaptation of the endogenous Salmonella enterica Serovar Typhi clyA-encoded hemolysin for antigen export enhances the immunogenicity of anthrax protective antigen domain 4 expressed by the attenuated live-vector vaccine strain CVD 908-htrA.Infect Immun 2004; 72(12):7096-7106.

[183]

Surve MV, Anil A, Kamath KG, Bhutda S, Sthanam LK, Pradhan A, et al.Membrane vesicles of group B Streptococcus disrupt feto-maternal barrier leading to preterm birth.PLoS Pathog 2016; 12(9):e1005816.

[184]

Panwar R, Pemmaraju SC, Sharma AK, Pruthi V.Efficacy of ferulic acid encapsulated chitosan nanoparticles against Candida albicans biofilm.Microb Pathog 2016; 95:21-31.

[185]

Jeon J, Mok HJ, Choi Y, Park SC, Jo H, Her J, et al.Proteomic analysis of extracellular vesicles derived from Propionibacterium acnes.Proteomics Clin Appl 2017; 11(1–2):1600040.

[186]

Alves NJ, Turner KB, Medintz IL, Walper SA.Emerging therapeutic delivery capabilities and challenges utilizing enzyme/protein packaged bacterial vesicles.Ther Deliv 2015; 6(7):873-887.

[187]

Hwang S, Nam J, Jung S, Song J, Doh H, Kim S.Gold nanoparticle-mediated photothermal therapy: current status and future perspective.Nanomedicine 2014; 9(13):2003-2022.

[188]

Lotvall J, Hill AF, Hochberg F, Buzas EI, Di DVizio, Gardiner C, et al.Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles.J Extracell Vesicles 2014; 3:26913.

[189]

Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al.Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines.J Extracell Vesicles 2018; 7(1):1535750.

[190]

Witwer KW, Goberdhan DCI, O L’Driscoll, Th Céry, Welsh JA, Blenkiron C, et al.Updating MISEV: evolving the minimal requirements for studies of extracellular vesicles.J Extracell Vesicles 2021; 10(14):e12182.

[191]

Rohde E, Pachler K, Gimona M.Manufacturing and characterization of extracellular vesicles from umbilical cord-derived mesenchymal stromal cells for clinical testing.Cytotherapy 2019; 21(6):581-592.

[192]

Tan K, Li R, Huang X, Liu Q.Outer membrane vesicles: current status and future direction of these novel vaccine adjuvants.Front Microbiol 2018; 9:783.

[193]

Diaz-Garrido N, Badia J, Baldoma L.Microbiota-derived extracellular vesicles in interkingdom communication in the gut.J Extracell Vesicles 2021; 10(13):e12161.

[194]

Dagnelie MA, Corvec S, Khammari A, Dreno B.Bacterial extracellular vesicles: a new way to decipher host–microbiota communications in inflammatory dermatoses.Exp Dermatol 2020; 29(1):22-28.

AI Summary AI Mindmap
PDF (1865KB)

417

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/