Elucidating the Substrate Specificity of Cytochrome P450 Enzymes: Insights into N- And S-Containing Small-Molecule Metabolism

Chaohua Yan , Guilin Wei , Zhuoan Jin , Xiaodong Li , Liuyi Yang , Liwei Zou , Ling Yang

Engineering ›› 2025, Vol. 54 ›› Issue (11) : 229 -250.

PDF (5393KB)
Engineering ›› 2025, Vol. 54 ›› Issue (11) : 229 -250. DOI: 10.1016/j.eng.2025.07.029
Review

Elucidating the Substrate Specificity of Cytochrome P450 Enzymes: Insights into N- And S-Containing Small-Molecule Metabolism

Author information +
History +
PDF (5393KB)

Abstract

Cytochrome P450 enzymes (P450s or CYPs) are the primary metabolic contributors to the absorption, distribution, metabolism, and excretion (ADME) properties of small-molecule drugs. These enzymes can catalyze various types of reactions, including metabolic reactions that occur at nitrogen (N) and sulfur (S) sites of small molecules. In this review, we conducted a comprehensive statistical analysis of 294 P450s-mediated small-molecule substrates, among which more than 47% substrates contained N and S. The purpose of the analysis is to elucidate the broad-spectrum cross-reactivity and specificity between these substrates and various CYP isoforms across five reaction types. Our findings reveal that substrates with molecular weights greater than 500 Da or less than 200 Da are predominantly governed by the dominant effect of the CYP isoform’s active sites. In contrast, small- to medium-sized molecules with molecular weights ranging from 200 to 400 Da exhibit a stronger dependence on the types of heteroatoms they contain, with the size of the enzyme’s catalytic site (cavity) playing a negligible role in determining substrate specificity. This review starts from the metabolic mechanisms of P450s-mediated N- and S-containing compounds, and systematically analyzes the structural characteristics of substrates involved in N-dealkylation, N-oxidation, and S-oxidation, as well as their metabolic interactions with P450s. These analyses provide a new perspective for improving the existing understanding of the relationship between the P450s substrate specificity and substrate structural characteristics, and offer a valuable perspective for enhancing drug design and predicting metabolic stability based on the P450s-catalyzed reaction framework.

Keywords

Drug metabolism / Cytochrome P450 enzymes / Active sites/catalytic sites / Substrate specificity / N- and S-containing substrates

Cite this article

Download citation ▾
Chaohua Yan, Guilin Wei, Zhuoan Jin, Xiaodong Li, Liuyi Yang, Liwei Zou, Ling Yang. Elucidating the Substrate Specificity of Cytochrome P450 Enzymes: Insights into N- And S-Containing Small-Molecule Metabolism. Engineering, 2025, 54(11): 229-250 DOI:10.1016/j.eng.2025.07.029

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Omura T, Sato R.A new cytochrome in liver microsomes.J Biol Chem 1962; 237(4):1375-1376.

[2]

Conney AH.Pharmacological implications of microsomal enzyme induction.Pharmacol Rev 1967; 19(3):317-366.

[3]

Guengerich FP.Drug metabolism: a half-century plus of progress, continued needs, and new opportunities.Drug Metab Dispos 2023; 51(1):99-104.

[4]

Rendic S, Guengerich FP.Survey of human oxidoreductases and cytochrome P450 enzymes involved in the metabolism of xenobiotic and natural chemicals.Chem Res Toxicol 2015; 28(1):38-42.

[5]

Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, et al.Drug–drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios.Drug Metab Dispos 2004; 32(11):1201-1208.

[6]

Guengerich FP.Human cytochrome P450 enzymes.P. Ortiz de Montellano (Ed.), Cytochrome P450, Springer, Cham, Cham 2015; 523-785.

[7]

Isin EM, Guengerich FP.Complex reactions catalyzed by cytochrome P450 enzymes.BBA 2007; 1770(3):314-329.

[8]

Sono M, Roach MP, Coulter ED, Dawson JH.Heme-containing oxygenases.Chem Rev 1996; 96(7):2841-2888.

[9]

Lewis DF.Guide to cytochromes P450: structure and function. Taylor & Francis, Oxford (2001)

[10]

Guengerich FP.Human cytochrome P450 enzymes.P.R.O. de Montellano (Ed.), Cytochrome P450, Springer, Boston, MA 1995; 473-535.

[11]

Guengerich FP, Macdonald TL.Chemical mechanisms of catalysis by cytochromes P-450: a unified view.Acc Chem Res 1984; 17(1):9-16.

[12]

Guengerich FP.Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity.Chem Res Toxicol 2001; 14(6):611-650.

[13]

Guengerich FP.Mechanisms of cytochrome P450-catalyzed oxidations.ACS Catal 2018; 8(12):10964-10976.

[14]

Guengerich FP.Mechanisms of cytochrome P450 substrate oxidation: minireview.J Biochem Mol Toxicol 2007; 21(4):163-168.

[15]

Guengerich FP, MacDonald TL.Mechanisms of cytochrome P-450 catalysis.FASEB J 1990; 4(8):2453-2459.

[16]

Lewis DF, Jacobs MN, Dickins M.Compound lipophilicity for substrate binding to human P450s in drug metabolism.Drug Discov Today 2004; 9(12):530-537.

[17]

Williams PA, Cosme J, Ward A, Angove HC, Matak DVinković, Jhoti H.Crystal structure of human cytochrome P450 2C9 with bound warfarin.Nature 2003; 424(6947):464-468.

[18]

Zhao L, Sun N, Tian L, Zhao S, Sun B, Sun Y, et al.Strategies for the development of highly selective cytochrome P450 inhibitors: several CYP targets in current research.Bioorg Med Chem Lett 2019; 29(16):2016-2024.

[19]

Williams PA, Cosme J, Vinkovic DM, Ward A, Angove HC, Day PJ, et al.Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone.Science 2004; 305(5684):683-686.

[20]

Poulos TL, Johnson EF.Structures of cytochrome P450 enzymes.P. Ortiz de Montellano (Ed.), Cytochrome P450, Springer, Cham, Cham 2015; 3-32.

[21]

Guengerich FP.Cataloging the repertoire of nature’s blowtorch, P450.Chem Biol 2009; 16(12):1215-1216.

[22]

Guengerich FP, Munro AW.Unusual cytochrome P450 enzymes and reactions.J Biol Chem 2013; 288(24):17065-17073.

[23]

Dong D, Wu B.Substrate selectivity of drug-metabolizing cytochrome P450s predicted from crystal structures and in silico modeling.Drug Metab Rev 2012; 44(1):1-17.

[24]

Lewis DF.Essential requirements for substrate binding affinity and selectivity toward human CYP2 family enzymes.Arch Biochem Biophys 2003; 409(1):32-44.

[25]

Totah RA, Rettie AE.Cytochrome P450 2C8: substrates, inhibitors, pharmacogenetics, and clinical relevance.Clin Pharmacol Ther 2005; 77(5):341-352.

[26]

Terfloth L, Bienfait B, Gasteiger J.Ligand-based models for the isoform specificity of cytochrome P450 3A4, 2D6, and 2C9 substrates.J Chem Inf Model 2007; 47(4):1688-1701.

[27]

Yano JK, Hsu MH, Griffin KJ, Stout CD, Johnson EF.Structures of human microsomal cytochrome P450 2A6 complexed with coumarin and methoxsalen.Nat Struct Mol Biol 2005; 12(9):822-823.

[28]

Porubsky PR, Meneely KM, Scott EE.Structures of human cytochrome P-450 2E1. Insights into the binding of inhibitors and both small molecular weight and fatty acid substrates.J Biol Chem 2008; 283(48):33698-33707.

[29]

Shah MB, Pascual J, Zhang Q, Stout CD, Halpert JR.Structures of cytochrome P450 2B6 bound to 4-benzylpyridine and 4-(4-nitrobenzyl) pyridine: insight into inhibitor binding and rearrangement of active site side chains.Mol Pharmacol 2011; 80(6):1047-1055.

[30]

Yano JK, Wester MR, Schoch GA, Griffin KJ, Stout CD, Johnson EF.The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-A resolution.J Biol Chem 2004; 279(37):38091-38094.

[31]

Ekroos M, Sjögren T.Structural basis for ligand promiscuity in cytochrome P450 3A4.Proc Natl Acad Sci USA 2006; 103(37):13682-13687.

[32]

Schoch GA, Yano JK, Sansen S, Dansette PM, Stout CD, Johnson EF.Determinants of cytochrome P450 2C8 substrate binding: structures of complexes with montelukast, troglitazone, felodipine, and 9-cis-retinoic acid.J Biol Chem 2008; 283(25):17227-17237.

[33]

Schoch GA, Yano JK, Wester MR, Griffin KJ, Stout CD, Johnson EF.Structure of human microsomal cytochrome P450 2C8. Evidence for a peripheral fatty acid binding site.J Biol Chem 2004; 279(10):9497-9503.

[34]

Lee CA, Neul D, Clouser-Roche A, Dalvie D, Wester MR, Jiang Y, et al.Identification of novel substrates for human cytochrome P450 2J2.Drug Metab Dispos 2010; 38(2):347-356.

[35]

Rowland P, Blaney FE, Smyth MG, Jones JJ, Leydon VR, Oxbrow AK, et al.Crystal structure of human cytochrome P450 2D6.J Biol Chem 2006; 281(11):7614-7622.

[36]

Wang A, Savas U, Hsu MH, Stout CD, Johnson EF.Crystal structure of human cytochrome P450 2D6 with prinomastat bound.J Biol Chem 2012; 287(14):10834-10843.

[37]

van M der Lee, Guchelaar HJ, Swen JJ.Substrate specificity of CYP2D6 genetic variants.Pharmacogenomics 2021; 22(16):1081-1089.

[38]

McLaughlin LA, Paine MJ, Kemp CA, Mar JDéchal, Flanagan JU, Ward CJ, et al.Why is quinidine an inhibitor of cytochrome P450 2D6? The role of key active-site residues in quinidine binding.J Biol Chem 2005; 280(46):38617-38624.

[39]

Liu J, Ericksen SS, Sivaneri M, Besspiata D, Fisher CW, Szklarz GD.The effect of reciprocal active site mutations in human cytochromes P450 1A1 and 1A2 on alkoxyresorufin metabolism.Arch Biochem Biophys 2004; 424(1):33-43.

[40]

Lewis DF, Lake BG.Molecular modelling of CYP1A subfamily members based on an alignment with CYP102: rationalization of CYP1A substrate specificity in terms of active site amino acid residues.Xenobiotica 1996; 26(7):723-753.

[41]

Reynald RL, Sansen S, Stout CD, Johnson EF.Structural characterization of human cytochrome P450 2C19: active site differences between P450s 2C8, 2C9, and 2C19.J Biol Chem 2012; 287(53):44581-44591.

[42]

Wester MR, Yano JK, Schoch GA, Yang C, Griffin KJ, Stout CD, et al.The structure of human cytochrome P450 2C9 complexed with flurbiprofen at 2.0-A resolution.J Biol Chem 2004; 279(34):35630-35637.

[43]

Tai G, Dickmann LJ, Matovic N, DeVoss JJ, Gillam EM, Rettie AE.Re-engineering of CYP2C9 to probe acid-base substrate selectivity.Drug Metab Dispos 2008; 36(10):1992-1997.

[44]

Sansen S, Yano JK, Reynald RL, Schoch GA, Griffin KJ, Stout CD, et al.Adaptations for the oxidation of polycyclic aromatic hydrocarbons exhibited by the structure of human P450 1A2.J Biol Chem 2007; 282(19):14348-14355.

[45]

Pedroni L, Louisse J, Punt A, Dorne JLCM, Dall C’Asta, Dellafiora L.A computational inter-species study on safrole phase I metabolism-dependent bioactivation: a mechanistic insight into the study of possible differences among species.Toxins 2023; 15(2):94.

[46]

Morra G, Genoni A, Neves MA, Merz KMJr, Colombo G.Molecular recognition and drug-lead identification: what can molecular simulations tell us?.Curr Med Chem 2010; 17(1):25-41.

[47]

Fatunde OA, Brown SA.The role of CYP450 drug metabolism in precision cardio-oncology.Int J Mol Sci 2020; 21(2):604.

[48]

Zhang RX, Dong K, Wang Z, Miao R, Lu W, Wu XY.Nanoparticulate drug delivery strategies to address intestinal cytochrome P450 CYP3A4 metabolism towards personalized medicine.Pharmaceutics 2021; 13(8):1261.

[49]

Ma HY, Ning J, Ge GB, Yang L, Hao DC.Research progress of human cytochrome P450 2J2 and its ligands.Yao Xue Xue Bao 2017; 52(1):26-33.

[50]

Lai XS, Yang LP, Li XT, Liu JP, Zhou ZW, Zhou SF.Human CYP2C8: structure, substrate specificity, inhibitor selectivity, inducers and polymorphisms.Curr Drug Metab 2009; 10(9):1009-1047.

[51]

Johnston JB, Ouellet H, Podust LM, Ortiz PRde Montellano.Structural control of cytochrome P450-catalyzed ω-hydroxylation.Arch Biochem Biophys 2011; 507(1):86-94.

[52]

Lewis DF, Dickins M, Eddershaw PJ, Tarbit MH, Goldfarb PS.Cytochrome P450 substrate specificities, substrate structural templates and enzyme active site geometries.Drug Metab Drug Interact 1999; 15(1):1-49.

[53]

Chaudhari K, Surana S, Jain P, Patel HM.Mycobacterium tuberculosis (MTB) GyrB inhibitors: an attractive approach for developing novel drugs against TB.Eur J Med Chem 2016; 124:160-185.

[54]

Sameem B, Saeedi M, Mahdavi M, Shafiee A.A review on tacrine-based scaffolds as multi-target drugs (MTDLs) for Alzheimer’s disease.Eur J Med Chem 2017; 128:332-345.

[55]

Akhtar J, Khan AA, Ali Z, Haider R, Shahar YM.Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities.Eur J Med Chem 2017; 125:143-189.

[56]

Ma X, Lv X, Zhang J.Exploiting polypharmacology for improving therapeutic outcome of kinase inhibitors (KIs): an update of recent medicinal chemistry efforts.Eur J Med Chem 2018; 143:449-463.

[57]

Kaur R, Dahiya L, Kumar M.Fructose-1,6-bisphosphatase inhibitors: a new valid approach for management of type 2 diabetes mellitus.Eur J Med Chem 2017; 141:473-505.

[58]

Patel RV, Keum YS, Park SW.Sketching the historical development of pyrimidones as the inhibitors of the HIV integrase.Eur J Med Chem 2015; 97:649-663.

[59]

Martins P, Jesus J, Santos S, Raposo LR, Roma-Rodrigues C, Baptista PV, et al.Heterocyclic anticancer compounds: recent advances and the paradigm shift towards the use of nanomedicine’s tool box.Molecules 2015; 20(9):16852-16891.

[60]

Oderinde MS, Frenette M, Robbins DW, Aquila B, Johannes JW.Photoredox mediated nickel catalyzed cross-coupling of thiols with aryl and heteroaryl iodides via thiyl radicals.J Am Chem Soc 2016; 138(6):1760-1763.

[61]

Li J, Bao WH, Zhang Y, Rao YJ.Metal‐free cercosporin-photocatalyzed C–S coupling for the selective synthesis of aryl sulfides under mild conditions.Eur J Med Chem 2019; 42:7175-7178.

[62]

Xu J, Liu RY, Yeung CS, Buchwald SL.Monophosphine ligands promote Pd-catalyzed C–S cross-coupling reactions at room temperature with soluble bases.ACS Catal 2019; 9(7):6461-6466.

[63]

Tavares JMDC Jr, da CDGSilva, Dos BFSantos, Souza NS, de AROliveira, Kupfer VL, et al.Cerium catalyst promoted C–S cross-coupling: synthesis of thioethers, dapsone and RN-18 precursors.Org Biomol Chem 2019; 17(47):10103-10108.

[64]

Li D, Huang X, Han K, Zhan CG.Catalytic mechanism of cytochrome P450 for 5′-hydroxylation of nicotine: fundamental reaction pathways and stereoselectivity.J Am Chem Soc 2011; 133(19):7416-7427.

[65]

Francisco CS, Rodrigues LR, Cerqueira NM, Oliveira-Campos AM, Rodrigues LM.Synthesis of novel benzofurocoumarin analogues and their anti-proliferative effect on human cancer cell lines.Eur J Med Chem 2012; 47(1):370-376.

[66]

Kato K, Nakayoshi T, Nokura R, Hosono H, Hiratsuka M, Ishikawa Y, et al.Deciphering structural alterations associated with activity reductions of genetic polymorphisms in cytochrome P450 2A6 using molecular dynamics simulations.Int J Mol Sci 2021; 22(18):10119.

[67]

Tiong KH, Mohammed NAYunus, Yiap BC, Tan EL, Ismail R, Ong CE.Inhibitory potency of 8-methoxypsoralen on cytochrome P450 2A6 (CYP2A6) allelic variants CYP2A6 15, CYP2A6 16, CYP2A6 21 and CYP2A6 22: differential susceptibility due to different sequence locations of the mutations.PLoS One 2014; 9(1):e86230.

[68]

Wang PF, Yang Y, Patel V, Neiner A, Kharasch ED.Natural products inhibition of cytochrome P450 2B6 activity and methadone metabolism.Drug Metab Dispos 2024; 52(3):252-265.

[69]

Shah MB, Zhang Q, Halpert JR.Crystal structure of CYP2B6 in complex with an efavirenz analog.Int J Mol Sci 2018; 19(4):1025.

[70]

Shah MB, Liu J, Zhang Q, Stout CD, Halpert JR.Halogen-π interactions in the cytochrome P450 active site: structural insights into human CYP2B6 substrate selectivity.ACS Chem Biol 2017; 12(5):1204-1210.

[71]

Levy JW, Hartman JH, Perry MDJr, Miller GP.Structural basis for cooperative binding of azoles to CYP2E1 as interpreted through guided molecular dynamics simulations.J Mol Graph Model 2015; 56:43-52.

[72]

Cooper HL, Groves JT.Molecular probes of the mechanism of cytochrome P450. Oxygen traps a substrate radical intermediate.Arch Biochem Biophys 2011; 507(1):111-118.

[73]

Hu K, Tu H, Xie J, Yang Z, Li Z, Chen Y, et al.Phenylalanine residues in the active site of CYP2E1 participate in determining the binding orientation and metabolism-dependent genotoxicity of aromatic compounds.Toxics 2023; 11(6):495.

[74]

Walsh AA, Szklarz GD, Scott EE.Human cytochrome P450 1A1 structure and utility in understanding drug and xenobiotic metabolism.J Biol Chem 2013; 288(18):12932-12943.

[75]

Mikstacka R, Dutkiewicz Z, Sobiak S, Baer-Dubowsk W.The inhibitory effect of natural stilbenes and their analogues on catalytic activity of cytochromes P450 family 1 in comparison with other phenols—structure and activity relationship.V. Rao (Ed.), Phytochemicals—a global perspective of their role in nutrition and health, InTech, Croatia 2012; 519-538.

[76]

Goh JJN, Behn J, Chong CS, Zhong G, Maurer-Stroh S, Fan H, et al.Structure-based virtual screening of CYP1A1 inhibitors: towards rapid tier-one assessment of potential developmental toxicants.Arch Toxicol 2021; 95(9):3031-3048.

[77]

Dutkiewicz Z, Mikstacka R.Hydration and structural adaptations of the human CYP1A1, CYP1A2, and CYP1B1 active sites by molecular dynamics simulations.Int J Mol Sci 2023; 24(14):11481.

[78]

Guti SLérrez-Pacheco, Peña-Ramos EA, Santes-Palacios R, Valenzuela-Melendres M, Hernández-Mendoza A, Burgos-Hernández A, et al.Inhibition of the CYP enzymatic system responsible of heterocyclic amines bioactivation by an Asclepias subulata extract.Plants 2023; 12(12):2354.

[79]

Zhou SF, Yang LP, Zhou ZW, Liu YH, Chan E.Insights into the substrate specificity, inhibitors, regulation, and polymorphisms and the clinical impact of human cytochrome P450 1A2.AAPS J 2009; 11(3):481-494.

[80]

Rahman AFMM, Yin W, Kadi AA, Jahng Y.Galeon: a biologically active molecule with in silico metabolite prediction, in vitro metabolic profiling in rat liver microsomes, and in silico binding mechanisms with CYP450 isoforms.Molecules 2020; 25(24):5903.

[81]

A. David Rodrigues (Ed.), Drug–drug interactions (2nd ed.), CRC Press, Boca Raton (2008)

[82]

Baj-Rossi C, De G, Carrar S.P450-based nano-bio-sensors for personalized medicine.Biosensors—emerging materials and applications, InTech, Croatia 2011; 447-482.

[83]

Mosher CM, Hummel MA, Tracy TS, Rettie AE.Functional analysis of phenylalanine residues in the active site of cytochrome P450 2C9.Biochemistry 2008; 47(45):11725-11734.

[84]

Danielson ML, Desai PV, Mohutsky MA, Wrighton SA, Lill MA.Potentially increasing the metabolic stability of drug candidates via computational site of metabolism prediction by CYP2C9: the utility of incorporating protein flexibility via an ensemble of structures.Eur J Med Chem 2011; 46(9):3953-3963.

[85]

Louet M, Labb CMé, Fagnen C, Aono CM, Homem-de-Mello P, Villoutreix BO, et al.Insights into molecular mechanisms of drug metabolism dysfunction of human CYP2C9*30.PLoS One 2018; 13(5):e0197249.

[86]

Dong AN, Ahemad N, Pan Y, Palanisamy UD, Yiap BC, Ong CE.The molecular and enzyme kinetic basis for altered activity of three cytochrome P450 2C19 variants found in the Chinese population.Curr Mol Pharmacol 2020; 13(3):233-244.

[87]

Je Lřábková.Inhibition potency of isoquinoline alkaloids toward cDNA-expressed recombinant human CYP2D6 [dissertation]. Charles University in Prague & University of Eastern Finland, Kuopio (2010)

[88]

Westergaard N, Baltzer MHoulind, Christrup LL, Juul-Larsen HG, Strandhave C, Olesen AE.Use of drugs with pharmacogenomics (PGx)-based dosing guidelines in a Danish cohort of persons with chronic kidney disease, both on dialysis and not on dialysis: perspectives for prescribing optimization.Basic Clin Pharmacol Toxicol 2024; 134(4):531-542.

[89]

McCarty KD, Ratliff SA, Furge KA, Furge LL.Tryptophan-75 is a low-energy channel-gating residue that facilitates substrate egress/access in cytochrome P450 2D6.Drug Metab Dispos 2021; 49(3):179-187.

[90]

Tanaka T, Kamiguchi N, Okuda T, Yamamoto Y.Characterization of the CYP2C8 active site by homology modeling.Chem Pharm Bull 2004; 52(7):836-841.

[91]

Melet A, Marques-Soares C, Schoch GA, Macherey AC, Jaouen M, Dansette PM, et al.Analysis of human cytochrome P450 2C8 substrate specificity using a substrate pharmacophore and site-directed mutants.Biochemistry 2004; 43(49):15379-15392.

[92]

Quiroga I, Scior T.Structure–function analysis of the cytochromes P450, responsible for phenprocoumon metabolism.J Mex Chem Soc 2018; 61(4):349-360.

[93]

Xu L, Chen LY.Molecular determinant of substrate binding and specificity of cytochrome P450 2J2.Sci Rep 2020; 10(1):22267.

[94]

Sevrioukova IF, Poulos TL.Understanding the mechanism of cytochrome P450 3A4: recent advances and remaining problems.Dalton Trans 2013; 42(9):3116-3126.

[95]

Sevrioukova IF.Interaction of CYP3A4 with caffeine: first insights into multiple substrate binding.J Biol Chem 2023; 299(9):105117.

[96]

Mak PJ, Denisov IG, Grinkova YV, Sligar SG, Kincaid JR.Defining CYP3A4 structural responses to substrate binding. Raman spectroscopic studies of a nanodisc-incorporated mammalian cytochrome P450.J Am Chem Soc 2011; 133(5):1357-1366.

[97]

Shahrokh K, Cheatham TE3rd, Yost GS.Conformational dynamics of CYP3A4 demonstrate the important role of Arg212 coupled with the opening of ingress, egress and solvent channels to dehydrogenation of 4-hydroxy-tamoxifen.Biochim Biophys Acta 2012; 1820(10):1605-1617.

[98]

Loos NHC, Beijnen JH, Schinkel AH.The mechanism-based inactivation of CYP3A4 by ritonavir: what mechanism?.Int J Mol Sci 2022; 23(17):9866.

[99]

Castagnoli N Jr, Rimoldi JM, Bloomquist J, Castagnoli KP.Potential metabolic bioactivation pathways involving cyclic tertiary amines and azaarenes.Chem Res Toxicol 1997; 10(9):924-940.

[100]

Eh-Haj BM.Metabolic N-dealkylation and N-Oxidation as elucidators of the role of alkylamino moieties in drugs acting at various receptors.Molecules 2021; 26(7):1917.

[101]

Zhang H, Wang C, Guo F, Jin L, Song R, Yang F, et al.In silico simulation of cytochrome P450-mediated metabolism of aromatic amines: a case study of N-hydroxylation.Ecotoxicol Environ Saf 2022; 237:113544.

[102]

Guengerich FP.N-hydroxyarylamines.Drug Metab Rev 2002; 34(3):607-623.

[103]

Koymans L, Donn GMé-Op den Kelder, te JMKoppele, Vermeulen NP.Generalized cytochrome P450-mediated oxidation and oxygenation reactions in aromatic substrates with activated N–H, O–H, C–H, or S–H substituents.Xenobiotica 1993; 23(6):633-648.

[104]

Kim D, Guengerich FP.Cytochrome P450 activation of arylamines and heterocyclic amines.Annu Rev Pharmacol Toxicol 2005; 45(1):27-49.

[105]

Kalgutkar AS, Dalvie DK, Aubrecht J, Smith EB, Coffing SL, Cheung JR, et al.Genotoxicity of 2-(3-chlorobenzyloxy) -6-(piperazinyl) pyrazine, a novel 5-hydroxytryptamine2c receptor agonist for the treatment of obesity: role of metabolic activation.Drug Metab Dispos 2007; 35(6):848-858.

[106]

Cashman JR.Some distinctions between flavin-containing and cytochrome P450 monooxygenases.Biochem Biophys Res Commun 2005; 338(1):599-604.

[107]

Cashman JR.Structural and catalytic properties of the mammalian flavin-containing monooxygenase.Chem Res Toxicol 1995; 8(2):166-181.

[108]

Podgorski MN, Coleman T, Churchman LR, Bruning JB, De JJVoss, Bell SG.Investigating the active oxidants involved in cytochrome P450 catalyzed sulfoxidation reactions.Chemistry 2022; 28(72):e202202428.

[109]

Störmer E, von LLMoltke, Shader RI, Greenblatt DJ.Metabolism of the antidepressant mirtazapine in vitro: contribution of cytochromes P-450 1A2, 2D6, and 3A4.Drug Metab Dispos 2000; 28(10):1168-1175.

[110]

Koyama E, Chiba K, Tani M, Ishizaki T.Identification of human cytochrome P450 isoforms involved in the stereoselective metabolism of mianserin enantiomers.J Pharmacol Exp Ther 1996; 278(1):21-30.

[111]

Chow T, Hiroi T, Imaoka S, Chiba K, Funae Y.Isoform-selective metabolism of mianserin by cytochrome P-450 2D.Drug Metab Dispos 1999; 27(10):1200-1204.

[112]

Haria M, Fitton A, Trazodone MD.A review of its pharmacology, therapeutic use in depression and therapeutic potential in other disorders.Drugs Aging 1994; 4(4):331-355.

[113]

Rotzinger S, Fang J, Baker GB.Trazodone is metabolized to m-chlorophenylpiperazine by CYP3A4 from human sources.Drug Metab Dispos 1998; 26(6):572-575.

[114]

Conn PJ, Sanders-Bush E.Relative efficacies of piperazines at the phosphoinositide hydrolysis-linked serotonergic (5-HT-2 and 5-HT-1c) receptors.J Pharmacol Exp Ther 1987; 242(2):552-557.

[115]

Fiorella D, Rabin RA, Winter JC.The role of the 5-HT2A and 5-HT2C receptors in the stimulus effects of m-chlorophenylpiperazine.Psychopharmacology 1995; 119(2):222-230.

[116]

Ebert B, Thorkildsen C, Andersen S, Christrup LL, Hjeds H.Opioid analgesics as noncompetitive N-methyl-D-aspartate (NMDA) antagonists.Biochem Pharmacol 1998; 56(5):553-559.

[117]

Hewitt DJ.The use of NMDA-receptor antagonists in the treatment of chronic pain.Clin J Pain 2000; 16(2 Suppl):S73-S79.

[118]

Yasar U, Annas A, Svensson JO, Lazorova L, Artursson P, Al-Shurbaji A.Ketobemidone is a substrate for cytochrome P4502C9 and 3A4, but not for P-glycoprotein.Xenobiotica 2005; 35(8):785-796.

[119]

Bondesson U, Hartvig P, Danielsson B.Quantitative determination of the urinary excretion of ketobemidone and four of its metabolites after intravenous and oral administration in man.Drug Metab Dispos 1981; 9(4):376-380.

[120]

Sultana A, Reilly J, Fenton M.Thioridazine for schizophrenia.Cochrane Database Syst Rev 2000; 3:CD001944.

[121]

Lin G, Hawes EM, McKay G, Korchinski ED, Midha KK.Metabolism of piperidine-type phenothiazine antipsychotic agents. IV. Thioridazine in dog, man and rat.Xenobiotica 1993; 23(10):1059-1074.

[122]

Papadopoulos AS, Crammer JL, Cowan DA.Phenolic metabolites of thioridazine in man.Xenobiotica 1985; 15(4):309-316.

[123]

Andersson T, Miners JO, Veronese ME, Birkett DJ.Identification of human liver cytochrome P450 isoforms mediating secondary omeprazole metabolism.Br J Clin Pharmacol 1994; 37(6):597-604.

[124]

Hesse LM, Venkatakrishnan K, von LLMoltke, Shader RI, Greenblatt DJ.CYP3A4 is the major CYP isoform mediating the in vitro hydroxylation and demethylation of flunitrazepam.Drug Metab Dispos 2001; 29(2):133-140.

[125]

Miura M, Ohkubo T.In vitro metabolism of quazepam in human liver and intestine and assessment of drug interactions.Xenobiotica 2004; 34(11–12):1001-1114.

[126]

Giraud C, Tran A, Rey E, Vincent J, Tr JMéluyer, Pons G.In vitro characterization of clobazam metabolism by recombinant cytochrome P450 enzymes: importance of CYP2C19.Drug Metab Dispos 2004; 32(11):1279-1286.

[127]

Jack ML, Colburn WA.Pharmacokinetic model for diazepam and its major metabolite desmethyldiazepam following diazepam administration.J Pharm Sci 1983; 72(11):1318-1323.

[128]

Jung F, Richardson TH, Raucy JL, Johnson EF.Diazepam metabolism by cDNA-expressed human 2C P450s: identification of P4502C18 and P4502C19 as low K(M) diazepam N-demethylases.Drug Metab Dispos 1997; 25(2):133-139.

[129]

Ono S, Hatanaka T, Miyazawa S, Tsutsui M, Aoyama T, Gonzalez FJ, et al.Human liver microsomal diazepam metabolism using cDNA-expressed cytochrome P450s: role of CYP2B6, 2C19 and the 3A subfamily.Xenobiotica 1996; 26(11):1155-1166.

[130]

Mattila MA, Larni HM.Flunitrazepam: a review of its pharmacological properties and therapeutic use.Drugs 1980; 20(5):353-374.

[131]

Kilicarslan T, Haining RL, Rettie AE, Busto U, Tyndale RF, Sellers EM.Flunitrazepam metabolism by cytochrome P450S 2C19 and 3A4.Drug Metab Dispos 2001; 29(4 Pt 1):460-465.

[132]

Chand N, Sofia RD.Azelastine—a novel in vivo inhibitor of leukotriene biosynthesis: a possible mechanism of action: a mini review.J Asthma 1995; 32(3):227-234.

[133]

Pivonka J, Segelman FH, Hartman CA, Segl WE, Kucharczyk N, Sofia RD.Determination of azelastine and desmethylazelastine in human plasma by high-performance liquid chromatography.J Chromatogr A 1987; 420(1):89-98.

[134]

Nakajima M, Nakamura S, Tokudome S, Shimada N, Yamazaki H, Yokoi T.Azelastine N-demethylation by cytochrome P-450 (CYP)3A4, CYP2D6, and CYP1A2 in human liver microsomes: evaluation of approach to predict the contribution of multiple CYPs.Drug Metab Dispos 1999; 27(12):1381-1391.

[135]

Morganroth J, Lyness WH, Perhach JL, Mather GG, Harr JE, Trager WF, et al.Lack of effect of azelastine and ketoconazole coadministration on electrocardiographic parameters in healthy volunteers.J Clin Pharmacol 1997; 37(11):1065-1072.

[136]

Erkinjuntti T, Gauthier S, Bullock R, Kurz A, Hammond G, Schwalen S, et al.Galantamine treatment in Alzheimer’s disease with cerebrovascular disease: responder analyses from a randomized, controlled trial (GAL-INT-6).J Psychopharmacol 2008; 22(7):761-768.

[137]

Bachus R, Bickel U, Thomsen T, Roots I, Kewitz H.The O-demethylation of the antidementia drug galanthamine is catalysed by cytochrome P450 2D6.Pharmacogenetics 1999; 9(6):661-668.

[138]

Westra P, van MJThiel, Vermeer GA, Soeterbroek AM, Scaf AH, Claessens HA.Pharmacokinetics of galanthamine (a long-acting anticholinesterase drug) in anaesthetized patients.Br J Anaesth 1986; 58(11):1303-1307.

[139]

Nehlig A, Daval JL, Debry G.Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects.Brain Res Brain Res Rev 1992; 17(2):139-170.

[140]

Tassaneeyakul W, Birkett DJ, McManus ME, Tassaneeyakul W, Veronese ME, Andersson T, et al.Caffeine metabolism by human hepatic cytochromes P450: contributions of 1A2, 2E1 and 3A isoforms.Biochem Pharmacol 1994; 47(10):1767-1776.

[141]

Kalow W, Tang BK.The use of caffeine for enzyme assays: a critical appraisal.Clin Pharmacol Ther 1993; 53(5):503-514.

[142]

Barnes PJ.Theophylline in chronic obstructive pulmonary disease: new horizons.Proc Am Thorac Soc 2005; 2(4):334-341.

[143]

Schwabe U, Ukena D, Lohse MJ.Xanthine derivatives as antagonists at A1 and A2 adenosine receptors.Naunyn Schmiedebergs Arch Pharmacol 1985; 330(3):212-221.

[144]

Tang-Liu DD, Williams RL, Riegelman S.Nonlinear theophylline elimination.Clin Pharmacol Ther 1982; 31(3):358-369.

[145]

Gundert-Remy U, Hildebrandt R, Hengen N, Weber E.Non-linear elimination processes of theophylline.Eur J Clin Pharmacol 1983; 24(1):71-78.

[146]

Campbell ME, Grant DM, Inaba T, Kalow W.Biotransformation of caffeine, paraxanthine, theophylline, and theobromine by polycyclic aromatic hydrocarbon-inducible cytochrome(s) P-450 in human liver microsomes.Drug Metab Dispos 1987; 15(2):237-249.

[147]

Tang-Liu DD, Riegelman S.Metabolism of theophylline to caffeine in adults.Res Commun Chem Pathol Pharmacol 1981; 34(3):371-380.

[148]

Shukla D, Chakraborty S, Singh S, Mishra B.Doxofylline: a promising methylxanthine derivative for the treatment of asthma and chronic obstructive pulmonary disease.Expert Opin Pharmacother 2009; 10(14):2343-2356.

[149]

Zhao X, Ma H, Pan Q, Wang H, Qian X, Song P, et al.Theophylline acetaldehyde as the initial product in doxophylline metabolism in human liver.Drug Metab Dispos 2020; 48(5):345-352.

[150]

Yamanaka H, Nakajima M, Fukami T, Sakai H, Nakamura A, Katoh M, et al.CYP2A6 AND CYP2B6 are involved in nornicotine formation from nicotine in humans: interindividual differences in these contributions.Drug Metab Dispos 2005; 33(12):1811-1818.

[151]

Murphy SE, Raulinaitis V, Brown KM.Nicotine 5′-oxidation and methyl oxidation by P450 2A enzymes.Drug Metab Dispos 2005; 33(8):1166-1173.

[152]

Molinski TF, Dalisay DS, Lievens SL, Saludes JP.Drug development from marine natural products.Nat Rev Drug Discov 2009; 8(1):69-85.

[153]

Wang J, Wang P, Zeng Z, Lin C, Lin Y, Cao D, et al.Trabectedin in cancers: mechanisms and clinical applications.Curr Pharm Des 2022; 28(24):1949-1965.

[154]

Vermeir M, Hemeryck A, Cuyckens F, Francesch A, Bockx M, Van JHoudt, et al.In vitro studies on the metabolism of trabectedin (YONDELIS) in monkey and man, including human CYP reaction phenotyping.Biochem Pharmacol 2009; 77(10):1642-1654.

[155]

Chen ZR, Irvine RJ, Bochner F, Somogyi AA.Morphine formation from codeine in rat brain: a possible mechanism of codeine analgesia.Life Sci 1990; 46(15):1067-1074.

[156]

Rytkönen J, Ranta VP, Kokki M, Kokki H, Hautajärvi H, Rinne V, et al.Physiologically based pharmacokinetic modelling of oxycodone drug–drug interactions.Biopharm Drug Dispos 2020; 41(1–2):72-88.

[157]

Kobayashi K, Chiba K, Yagi T, Shimada N, Taniguchi T, Horie T, et al.Identification of cytochrome P450 isoforms involved in citalopram N-demethylation by human liver microsomes.J Pharmacol Exp Ther 1997; 280(2):927-933.

[158]

Margolis JM, O JP’Donnell, Mankowski DC, Ekins S, Obach RS.(R)-, (S)-, and racemic fluoxetine N-demethylation by human cytochrome P450 enzymes.Drug Metab Dispos 2000; 28(10):1187-1191.

[159]

Tateishi T, Asoh M, Yamaguchi A, Yoda T, Okano YJ, Koitabashi Y, et al.Developmental changes in urinary elimination of theophylline and its metabolites in pediatric patients.Pediatr Res 1999; 45(1):66-70.

[160]

Xu ZH, Wang W, Zhao XJ, Huang SL, Zhu B, He N, et al.Evidence for involvement of polymorphic CYP2C19 and 2C9 in the N-demethylation of sertraline in human liver microsomes.Br J Clin Pharmacol 1999; 48(3):416-423.

[161]

Olesen OV, Linnet K.Studies on the stereoselective metabolism of citalopram by human liver microsomes and cDNA-expressed cytochrome P450 enzymes.Pharmacology 1999; 59(6):298-309.

[162]

Rochat B, Amey M, Gillet M, Meyer UA, Baumann P.Identification of three cytochrome P450 isozymes involved in N-demethylation of citalopram enantiomers in human liver microsomes.Pharmacogenetics 1997; 7(1):1-10.

[163]

von LL Moltke, Greenblatt DJ, Duan SX, Schmider J, Wright CE, Harmatz JS, et al.Human cytochromes mediating N-demethylation of fluoxetine in vitro.Psychopharmacology 1997; 132(4):402-407.

[164]

Ring BJ, Eckstein JA, Gillespie JS, Binkley SN, VandenBranden M, Wrighton SA.Identification of the human cytochromes p450 responsible for in vitro formation of R- and S-norfluoxetine.J Pharmacol Exp Ther 2001; 297(3):1044-1050.

[165]

Kreth K, Kovar K, Schwab M, Zanger UM.Identification of the human cytochromes P450 involved in the oxidative metabolism of “Ecstasy”-related designer drugs.Biochem Pharmacol 2000; 59(12):1563-1571.

[166]

de R la Torre, Yubero-Lahoz S, Pardo-Lozano R, Farr Mé.MDMA, methamphetamine, and CYP2D6 pharmacogenetics: what is clinically relevant?.Front Genet 2012; 3:235.

[167]

Tucker GT, Lennard MS, Ellis SW, Woods HF, Cho AK, Lin LY, et al.The demethylenation of methylenedioxymethamphetamine (“ecstasy”) by debrisoquine hydroxylase (CYP2D6).Biochem Pharmacol 1994; 47(7):1151-1156.

[168]

Lin LY, Di EWStefano, Schmitz DA, Hsu L, Ellis SW, Lennard MS, et al.Oxidation of methamphetamine and methylenedioxymethamphetamine by CYP2D6.Drug Metab Dispos 1997; 25(9):1059-1064.

[169]

Olesen OV, Linnet K.Hydroxylation and demethylation of the tricyclic antidepressant nortriptyline by cDNA-expressed human cytochrome P-450 isozymes.Drug Metab Dispos 1997; 25(6):740-744.

[170]

Mellström B, von CBahr.Demethylation and hydroxylation of amitriptyline, nortriptyline, and 10-hydroxyamitriptyline in human liver microsomes.Drug Metab Dispos 1981; 9(6):565-568.

[171]

Wu ZL, Huang SL, Ou-Yang DS, Xu ZH, Xie HG, Zhou HH.Clomipramine N-demethylation metabolism in human liver microsomes.Zhongguo Yao Li Xue Bao 1998; 19(5):433-436.

[172]

Nielsen KK, Flinois JP, Beaune P, Br Køsen.The biotransformation of clomipramine in vitro, identification of the cytochrome P450s responsible for the separate metabolic pathways.J Pharmacol Exp Ther 1996; 277(3):1659-1664.

[173]

Nielsen KK, Br Køsen, Gram LF.Steady-state plasma levels of clomipramine and its metabolites: impact of the sparteine/debrisoquine oxidation polymorphism. Danish University Antidepressant Group.Eur J Clin Pharmacol 1992; 43(4):405-411.

[174]

Abass K, Reponen P, Turpeinen M, Jalonen J, Pelkonen O.Characterization of diuron N-demethylation by mammalian hepatic microsomes and cDNA-expressed human cytochrome P450 enzymes.Drug Metab Dispos 2007; 35(9):1634-1641.

[175]

Hidestrand M, Oscarson M, Salonen JS, Nyman L, Pelkonen O, Turpeinen M, et al.CYP2B6 and CYP2C19 as the major enzymes responsible for the metabolism of selegiline, a drug used in the treatment of Parkinson’s disease, as revealed from experiments with recombinant enzymes.Drug Metab Dispos 2001; 29(11):1480-1484.

[176]

Benetton SA, Fang C, Yang YO, Alok R, Year M, Lin CC, et al.P450 phenotyping of the metabolism of selegiline to desmethylselegiline and methamphetamine.Drug Metab Pharmacokinet 2007; 22(2):78-87.

[177]

Grace JM, Kinter MT, Macdonald TL.Atypical metabolism of deprenyl and its enantiomer, (S)-(+)-N, alpha-dimethyl-N-propynylphenethylamine, by cytochrome P450 2D6.Chem Res Toxicol 1994; 7(3):286-290.

[178]

Vogelgesang B, Echizen H, Schmidt E, Eichelbaum M.Stereoselective first-pass metabolism of highly cleared drugs: studies of the bioavailability of L- and D-verapamil examined with a stable isotope technique.Br J Clin Pharmacol 1984; 18(5):733-740.

[179]

Kroemer HK, Gautier JC, Beaune P, Henderson C, Wolf CR, Eichelbaum M.Identification of P450 enzymes involved in metabolism of verapamil in humans.Naunyn Schmiedebergs Arch Pharmacol 1993; 348(3):332-337.

[180]

Gill J, Heel RC, Amiodarone FA.An overview of its pharmacological properties, and review of its therapeutic use in cardiac arrhythmias.Drugs 1992; 43(1):69-110.

[181]

Latini R, Tognoni G, Kates RE.Clinical pharmacokinetics of amiodarone.Clin Pharmacokinet 1984; 9(2):136-156.

[182]

Trivier JM, Libersa C, Belloc C, Lhermitte M.Amiodarone N-deethylation in human liver microsomes: involvement of cytochrome P450 3A enzymes (first report).Life Sci 1993; 52(10):PL91-PL96.

[183]

Fabre G, Julian B, Saint-Aubert B, Joyeux H, Berger Y.Evidence for CYP3A-mediated N-deethylation of amiodarone in human liver microsomal fractions.Drug Metab Dispos 1993; 21(6):978-985.

[184]

Ohyama K, Nakajima M, Nakamura S, Shimada N, Yamazaki H, Yokoi T.A significant role of human cytochrome P450 2C8 in amiodarone N-deethylation: an approach to predict the contribution with relative activity factor.Drug Metab Dispos 2000; 28(11):1303-1310.

[185]

Scripture CD, Pieper JA.Clinical pharmacokinetics of fluvastatin.Clin Pharmacokinet 2001; 40(4):263-281.

[186]

Fischer V, Johanson L, Heitz F, Tullman R, Graham E, Baldeck JP, et al.The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor fluvastatin: effect on human cytochrome P-450 and implications for metabolic drug interactions.Drug Metab Dispos 1999; 27(3):410-416.

[187]

Zhang J, Tian Q, Chan SY, Duan W, Zhou S.Insights into oxazaphosphorine resistance and possible approaches to its circumvention.Drug Resist Updat 2005; 8(5):271-297.

[188]

Zhang J, Tian Q, Yung SChan, Chuen SLi, Zhou S, Duan W, et al.Metabolism and transport of oxazaphosphorines and the clinical implications.Drug Metab Rev 2005; 37(4):611-703.

[189]

Furlanut M, Franceschi L.Pharmacology of ifosfamide.Oncology 2003; 65(Suppl 2):2-6.

[190]

Zhang J, Tian Q, Zhu YZ, Xu AL, Zhou SF.Reversal of resistance to oxazaphosphorines.Curr Cancer Drug Targets 2006; 6(5):385-407.

[191]

Dai ZR, Ge GB, Feng L, Ning J, Hu LH, Jin Q, et al.A highly selective ratiometric two-photon fluorescent probe for human cytochrome P450 1A.J Am Chem Soc 2015; 137(45):14488-14495.

[192]

Dai ZR, Feng L, Jin Q, Cheng H, Li Y, Ning J, et al.A practical strategy to design and develop an isoform-specific fluorescent probe for a target enzyme: CYP1A1 as a case study.Chem Sci 2017; 8(4):2795-2803.

[193]

Porubsky PR, Battaile KP, Scott EE.Human cytochrome P450 2E1 structures with fatty acid analogs reveal a previously unobserved binding mode.J Biol Chem 2010; 285(29):22282-22290.

[194]

Najib J.Eszopiclone, a nonbenzodiazepine sedative-hypnotic agent for the treatment of transient and chronic insomnia.Clin Ther 2006; 28(4):491-516.

[195]

Neff JA, Moody DE.Differential N-demethylation of l-alpha-acetylmethadol (LAAM) and norLAAM by cytochrome P450s 2B6, 2C18, and 3A4.Biochem Biophys Res Commun 2001; 284(3):751-756.

[196]

Müller BA.Imatinib and its successors—how modern chemistry has changed drug development.Curr Pharm Des 2009; 15(2):120-133.

[197]

Savage DG, Antman KH.Imatinib mesylate—a new oral targeted therapy.N Engl J Med 2002; 346(9):683-693.

[198]

Capdeville R, Buchdunger E, Zimmermann J, Matter A.Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug.Nat Rev Drug Discov 2002; 1(7):493-502.

[199]

Gschwind HP, Pfaar U, Waldmeier F, Zollinger M, Sayer C, Zbinden P, et al.Metabolism and disposition of imatinib mesylate in healthy volunteers.Drug Metab Dispos 2005; 33(10):1503-1512.

[200]

Ma S, Xu Y, Shou M.Characterization of imatinib metabolites in rat and human liver microsomes: differentiation of hydroxylation from N-oxidation by liquid chromatography/atmospheric pressure chemical ionization mass spectrometry.Rapid Commun Mass Spectrom 2009; 23(10):1446-1450.

[201]

Millson DS, Tepper SJ, Rapoport AM.Migraine pharmacotherapy with oral triptans: a rational approach to clinical management.Expert Opin Pharmacother 2000; 1(3):391-404.

[202]

Omote M.Pharmacological, pharmacokinetic and clinical profile of eletriptan (Relpax), a new triptan for migraine.Nippon Yakurigaku Zasshi 2003; 122(1):93-101.

[203]

Gothard P, Rogers TR.Voriconazole for serious fungal infections.Int J Clin Pract 2004; 58(1):74-80.

[204]

Kale P, Johnson LB.Second-generation azole antifungal agents.Drugs Today 2005; 41(2):91-105.

[205]

Purkins L, Wood N, Ghahramani P, Greenhalgh K, Allen MJ, Kleinermans D.Pharmacokinetics and safety of voriconazole following intravenous- to oral-dose escalation regimens.Antimicrob Agents Chemother 2002; 46(8):2546-2553.

[206]

Hyland R, Jones BC, Smith DA.Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole.Drug Metab Dispos 2003; 31(5):540-547.

[207]

Murayama N, Imai N, Nakane T, Shimizu M, Yamazaki H.Roles of CYP3A4 and CYP2C19 in methyl hydroxylated and N-oxidized metabolite formation from voriconazole, a new anti-fungal agent, in human liver microsomes.Biochem Pharmacol 2007; 73(12):2020-2026.

[208]

Yanni SB, Annaert PP, Augustijns P, Bridges A, Gao Y, Benjamin DKJr, et al.Role of flavin-containing monooxygenase in oxidative metabolism of voriconazole by human liver microsomes.Drug Metab Dispos 2008; 36(6):1119-1125.

[209]

Jarvis B, Mexiletine CAJ.A review of its therapeutic use in painful diabetic neuropathy.Drugs 1998; 56(4):691-707.

[210]

Manolis AS, Deering TF, Cameron J, Estes NA.Mexiletine: pharmacology and therapeutic use.Clin Cardiol 1990; 13(5):349-359.

[211]

Schrader BJ, Bauman JL.Mexiletine: a new type I antiarrhythmic agent.Drug Intell Clin Pharm 1986; 20(4):255-260.

[212]

Vandamme N, Broly F, Libersa C, Courseau C, Lhermitte M.Stereoselective hydroxylation of mexiletine in human liver microsomes: implication of P450IID6—a preliminary report.J Cardiovasc Pharmacol 1993; 21(1):77-83.

[213]

Nakajima M, Kobayashi K, Shimada N, Tokudome S, Yamamoto T, Kuroiwa Y.Involvement of CYP1A2 in mexiletine metabolism.Br J Clin Pharmacol 1998; 46(1):55-62.

[214]

Labb Lé, Abolfathi Z, Lessard E, Pakdel H, Beaune P, Turgeon J.Role of specific cytochrome P450 enzymes in the N-oxidation of the antiarrhythmic agent mexiletine.Xenobiotica 2003; 33(1):13-25.

[215]

Akama T, Shida Y, Sugaya T, Ishida H, Gomi K, Kasai M.Novel 5-aminoflavone derivatives as specific antitumor agents in breast cancer.J Med Chem 1996; 39(18):3461-3469.

[216]

Bergman K, Olofsson I, Sjöberg P.Dose selection for carcinogenicity studies of pharmaceuticals: systemic exposure to phenacetin at carcinogenic dosage in the rat.Regul Toxicol Pharm 1998; 28(3):226-229.

[217]

McLaughlin JK, Lipworth L, Chow WH, Blot WJ.Analgesic use and chronic renal failure: a critical review of the epidemiologic literature.Kidney Int 1998; 54(3):679-686.

[218]

Nohmi T, Mizokami K, Kawano S, Fukuhara M, Ishidate MJr.Metabolic activation of phenacetin and phenetidine by several forms of cytochrome P-450 purified from liver microsomes of rats and hamsters.Jpn J Cancer Res 1987; 78(2):153-161.

[219]

Mulder GJ, Kadlubar FF, Mays JB, Hinson JA.Reaction of mutagenic phenacetin metabolites with glutathione and DNA. Possible implications for toxicity.Mol Pharmacol 1984; 26(2):342-347.

[220]

Hinson JA, Mays JB.Covalent binding of the phenacetin metabolite p-nitrosophenetole to protein.J Pharmacol Exp Ther 1986; 238(1):106-112.

[221]

Holmes B, Brogden RN, Heel RC, Speight TM, Guanabenz AGS.A review of its pharmacodynamic properties and therapeutic efficacy in hypertension.Drugs 1983; 26(3):212-229.

[222]

Clement B, Demesmaeker M.Formation of guanoxabenz from guanabenz in human liver. A new metabolic marker for CYP1A2.Drug Metab Dispos 1997; 25(11):1266-1271.

[223]

Uchida S, Honda F, Otsuka M, Satoh Y, Mori J, Ono T, et al.Pharmacological study of [2-chloro-11-(2-dimethylaminoethoxy) dibenzo[b,f]thiepine] (zotepine), a new neuroleptic drug.Arzneimittelforschung 1979; 29(10):1588-1594.

[224]

.Amoxapine.In: Drugs and Lactation Database (Lact Med®). Bethesda: National Institute of Child Health and Human Development; 2022.

[225]

Shiraga T, Kaneko H, Iwasaki K, Tozuka Z, Suzuki A, Hata T.Identification of cytochrome P450 enzymes involved in the metabolism of zotepine, an antipsychotic drug, in human liver microsomes.Xenobiotica 1999; 29(3):217-229.

[226]

Ferrari MD, Goadsby PJ, Roon KI, Lipton RB.Triptans (serotonin, 5-HT1B/1D agonists) in migraine: detailed results and methods of a meta-analysis of 53 trials.Cephalalgia 2002; 22(8):633-658.

[227]

Wild MJ, McKillop D, Butters CJ.Determination of the human cytochrome P450 isoforms involved in the metabolism of zolmitriptan.Xenobiotica 1999; 29(8):847-857.

[228]

Riera R, Andrade LE, Souza AW, Kayser C, Yanagita ET, Trevisani VF.Lidocaine for systemic sclerosis: a double-blind randomized clinical trial.Orphanet J Rare Dis 2011; 6(1):5.

[229]

Coutts RT, Torok-Both GA, Chu LV, Tam YK, Pasutto FM.In vivo metabolism of lidocaine in the rat. Isolation of urinary metabolites as pentafluorobenzoyl derivatives and their identification by combined gas chromatography-mass spectrometry.J Chromatogr A 1987; 421(2):267-280.

[230]

Patterson LH, Hall G, Nijjar BS, Khatra PK, Cowan DA.In-vitro metabolism of lignocaine to its N-oxide.J Pharm Pharmacol 1986; 38(4):326.

[231]

Wu J, Cao Y, Zhang Y, Liu Y, Hong JY, Zhu L, et al.Deoxyschizandrin, a naturally occurring lignan, is a specific probe substrate of human cytochrome P450 3A.Drug Metab Dispos 2014; 42(1):94-104.

[232]

Wu JJ, Ge GB, He YQ, Wang P, Dai ZR, Ning J, et al.Gomisin A is a novel isoform-specific probe for the selective sensing of human cytochrome P450 3A4 in liver microsomes and living cells.AAPS J 2016; 18(1):134-145.

[233]

Cao YF, Zhang YY, Li J, Ge GB, Hu D, Liu HX, et al.CYP3A catalyses schizandrin biotransformation in human, minipig and rat liver microsomes.Xenobiotica 2010; 40(1):38-47.

[234]

Wu JJ, Cao YF, Feng L, He YQ, Hong JY, Dou TY, et al.A naturally occurring isoform-specific probe for highly selective and sensitive detection of human cytochrome P450 3A5.J Med Chem 2017; 60(9):3804-3813.

[235]

Dai ZR, Ning J, Sun GB, Wang P, Zhang F, Ma HY, et al.Cytochrome P450 3A enzymes are key contributors for hepatic metabolism of bufotalin, a natural constitute in Chinese medicine Chansu.Front Pharmacol 2019; 10:52.

[236]

Ning J, Yu ZL, Hu LH, Wang C, Huo XK, Deng S, et al.Characterization of phase I metabolism of resibufogenin and evaluation of the metabolic effects on its antitumor activity and toxicity.Drug Metab Dispos 2015; 43(3):299-308.

[237]

Wu JJ, Guan XQ, Dai ZR, He RJ, Ding XX, Yang L, et al.Molecular probes for human cytochrome P450 enzymes: recent progress and future perspectives.Coord Chem Rev 2021; 427:213600.

[238]

Goldenberg H, Fishman V, Heaton A, Burnett R.A detailed evaluation of promazine metabolism.Proc Soc Exp Biol Med 1964; 115(4):1044-1051.

[239]

Svendsen CN, Bird ED.HPLC with electrochemical detection to measure chlorpromazine, thioridazine and metabolites in human brain.Psychopharmacology 1986; 90(3):316-321.

[240]

Fujimura H, Tsurumi K, Yanagihara M, Hiramatsu Y, Tamura Y, Shimizu Y, et al.Pharmacological study of mequitazine (LM-209) (II): anti-allergic action.Nippon Yakurigaku Zasshi 1981; 78(4):291-303.

[241]

Hojo M, Nagasaka Y, Katayama O, Serizawa I.Pharmacological study of Mequitazine (LM-209). (V). Pharmacological actions of a main metabolite of LM-209, mequitazine sulfoxide (LM-209 SO).Nippon Yakurigaku Zasshi 1981; 78(5):431-438.

[242]

Nakamura K, Yokoi T, Kodama T, Inoue K, Nagashima K, Shimada N, et al.Oxidation of histamine H1 antagonist mequitazine is catalyzed by cytochrome P450 2D6 in human liver microsomes.J Pharmacol Exp Ther 1998; 284(2):437-442.

[243]

Wójcikowski J, Maurel P, Daniel WA.Characterization of human cytochrome p450 enzymes involved in the metabolism of the piperidine-type phenothiazine neuroleptic thioridazine.Drug Metab Dispos 2006; 34(3):471-476.

[244]

Savi P, Herbert JM.Clopidogrel and ticlopidine: P2Y12 adenosine diphosphate-receptor antagonists for the prevention of atherothrombosis.Semin Thromb Hemost 2005; 31(2):174-183.

[245]

Kam PC, Nethery CM.The thienopyridine derivatives (platelet adenosine diphosphate receptor antagonists), pharmacology and clinical developments.Anaesthesia 2003; 58(1):28-35.

[246]

Flores-Runk P, Raasch RH.Ticlopidine and antiplatelet therapy.Ann Pharmacother 1993; 27(9):1090-1098.

[247]

Quinn MJ, Fitzgerald DJ.Ticlopidine and clopidogrel.Circulation 1999; 100(15):1667-1672.

[248]

Skurnik YD, Tcherniak A, Edlan K, Sthoeger Z.Ticlopidine-induced cholestatic hepatitis.Ann Pharmacother 2003; 37(3):371-375.

[249]

Desager JP.Clinical pharmacokinetics of ticlopidine.Clin Pharmacokinet 1994; 26(5):347-355.

[250]

Ha-Duong NT, Dijols S, Macherey AC, Goldstein JA, Dansette PM, Mansuy D.Ticlopidine as a selective mechanism-based inhibitor of human cytochrome P450 2C19.Biochemistry 2001; 40(40):12112-12122.

[251]

Noda K, Suzuki A, Okui M, Noguchi H, Nishiura M, Nishiura N.Pharmacokinetics and metabolism of 2-chloro-11-(2-dimethylaminoethoxy)-dibenzo [b,f] thiepine (zotepine) in rat, mouse, dog and man.Arzneimittelforschung 1979; 29(10):1595-1600.

[252]

Yan CH, Wei GL, Jin ZA, Lu TC, Li XD, Wu JC, et al.Discovery and evaluation of a novel selective fluorescent substrate for CYP3A4 based on sulfoxidation characteristics.Chem Commun 2025; 61(49):8871-8874.

[253]

Phillips IR, Dolphin CT, Clair P, Hadley MR, Hutt AJ, McCombie RR, et al.The molecular biology of the flavin-containing monooxygenases of man.Chem Biol Interact 1995; 96(1):17-32.

[254]

Hajjar NP, Hodgson E.Flavin adenine dinucleotide–dependent monooxygenase: its role in the sulfoxidation of pesticides in mammals.Science 1980; 209(4461):1134-1136.

[255]

Usmani KA, Karoly ED, Hodgson E, Rose RL.In vitro sulfoxidation of thioether compounds by human cytochrome P450 and flavin-containing monooxygenase isoforms with particular reference to the CYP2C subfamily.Drug Metab Dispos 2004; 32(3):333-339.

[256]

Andersson T, Weidolf L.Stereoselective disposition of proton pump inhibitors.Clin Drug Invest 2008; 28(5):263-279.

[257]

Abelö A, Andersson TB, Antonsson M, Naudot AK, Sk Iånberg, Weidolf L.Stereoselective metabolism of omeprazole by human cytochrome P450 enzymes.Drug Metab Dispos 2000; 28(8):966-972.

[258]

Böttiger Y, Tybring G, Götharson E, Bertilsson L.Inhibition of the sulfoxidation of omeprazole by ketoconazole in poor and extensive metabolizers of S-mephenytoin.Clin Pharmacol Ther 1997; 62(4):384-391.

[259]

Katsuki H, Hamada A, Nakamura C, Arimori K, Nakano M.Role of CYP3A4 and CYP2C19 in the stereoselective metabolism of lansoprazole by human liver microsomes.Eur J Clin Pharmacol 2001; 57(10):709-715.

[260]

Kim KA, Kim MJ, Park JY, Shon JH, Yoon YR, Lee SS, et al.Stereoselective metabolism of lansoprazole by human liver cytochrome P450 enzymes.Drug Metab Dispos 2003; 31(10):1227-1234.

[261]

Li XQ, Weidolf L, Simonsson R, Andersson TB.Enantiomer/enantiomer interactions between the S- and R- isomers of omeprazole in human cytochrome P450 enzymes: major role of CYP2C19 and CYP3A4.J Pharmacol Exp Ther 2005; 315(2):777-787.

[262]

Pearce RE, Rodrigues AD, Goldstein JA, Parkinson A.Identification of the human P450 enzymes involved in lansoprazole metabolism.J Pharmacol Exp Ther 1996; 277(2):805-816.

[263]

Renberg L, Simonsson R, Hoffmann KJ.Identification of two main urinary metabolites of [14C] omeprazole in humans.Drug Metab Dispos 1989; 17(1):69-76.

[264]

Matheson AJ, Jarvis B.Lansoprazole: an update of its place in the management of acid-related disorders.Drugs 2001; 61(12):1801-1833.

[265]

Bardou M, Martin J.Pantoprazole: from drug metabolism to clinical relevance.Expert Opin Drug Metab Toxicol 2008; 4(4):471-483.

[266]

Jungnickel PW.Pantoprazole: a new proton pump inhibitor.Clin Ther 2000; 22(11):1268-1293.

[267]

Blume H, Donath F, Warnke A, Schug BS.Pharmacokinetic drug interaction profiles of proton pump inhibitors.Drug Saf 2006; 29(9):769-784.

[268]

Thjodleifsson B.Review of rabeprazole in the treatment of gastro-oesophageal reflux disease.Expert Opin Pharmacother 2004; 5(1):137-149.

[269]

Ishizaki T, Horai Y.Review article: cytochrome P450 and the metabolism of proton pump inhibitors—-emphasis on rabeprazole.Aliment Pharmacol Ther 1999; 13(s3):27-36.

[270]

VandenBranden M, Ring BJ, Binkley SN, Wrighton SA.Interaction of human liver cytochromes P450 in vitro with LY307640, a gastric proton pump inhibitor.Pharmacogenetics 1996; 6(1):81-91.

[271]

Casabar RC, Wallace AD, Hodgson E, Rose RL.Metabolism of endosulfan-alpha by human liver microsomes and its utility as a simultaneous in vitro probe for CYP2B6 and CYP3A4.Drug Metab Dispos 2006; 34(10):1779-1785.

AI Summary AI Mindmap
PDF (5393KB)

10287

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/