Internet of Satellites (IoS) for Intelligent Satellite Cluster: Applications, Methods, and Challenges

Guangteng Fan , Peng Wu , Mengqi Yang , Jian Wang , Dechao Ran , Jincheng Dai , Yimeng Zhang , Lu Cao , Wenjun Xu , Ping Zhang

Engineering ›› 2025, Vol. 54 ›› Issue (11) : 155 -170.

PDF (3232KB)
Engineering ›› 2025, Vol. 54 ›› Issue (11) : 155 -170. DOI: 10.1016/j.eng.2025.08.024
Article

Internet of Satellites (IoS) for Intelligent Satellite Cluster: Applications, Methods, and Challenges

Author information +
History +
PDF (3232KB)

Abstract

The integration of emerging technologies such as artificial intelligence and cloud computing is accelerating the development of intelligent and autonomous satellite systems. However, limitations in onboard sensing, computing, storage, and energy resources continue to constrain the intelligent functionalities of individual satellites. Currently, most studies focus on either satellite intelligence or satellite networking, while systematic studies on their integration remain scarce. To address this gap, this paper introduces the concept of an intelligent satellite cluster system, which leverages satellite networks to enable collaborative intelligence among satellites, thereby enhancing the overall system intelligence. After summarizing the typical use cases of the intelligent satellite cluster system, we analyze the corresponding demands on network capabilities. Based on these demands, we propose the concept of the Internet of satellites (IoS) tailored to support the intelligent satellite cluster system. Specifically, we design both the logical and physical architectures of IoS and elaborate on its key enabling technologies. Finally, we present the research progress and outcomes achieved by our team on these core technologies, and discuss the challenges that remain. This paper aims to build consensus around intelligent and connected satellite technologies, promote innovation and standardization, and enhance the intelligent service capabilities of future large-scale satellite systems.

Keywords

Intelligent satellite cluster / Internet of satellites (IoS) / Space edge computing / Satellite semantic communication

Cite this article

Download citation ▾
Guangteng Fan, Peng Wu, Mengqi Yang, Jian Wang, Dechao Ran, Jincheng Dai, Yimeng Zhang, Lu Cao, Wenjun Xu, Ping Zhang. Internet of Satellites (IoS) for Intelligent Satellite Cluster: Applications, Methods, and Challenges. Engineering, 2025, 54(11): 155-170 DOI:10.1016/j.eng.2025.08.024

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Luglio M, Quadrini M, Roseti C, Zampognaro F.Modes and models for satellite integration in 5G networks.IEEE Commun Mag 2023; 61(4):50-56.

[2]

Xie R, Tang Q, Wang Q, Liu X, Yu FR, Huang T.Satellite–terrestrial integrated edge computing networks: architecture, challenges, and open issues.IEEE Netw 2020; 34(3):224-231.

[3]

Azari MM, Solanki S, Chatzinotas S, Kodheli O, Sallouha H, Colpaert A, et al.Evolution of non-terrestrial networks from 5G to 6G: a survey.IEEE Commun Surv Tutor 2022; 24(4):2633-2672.

[4]

.Starlink network update [Internet].Hawthorne City: Starlink; c2025 [cited 2025 Aug 7]. Available from: https://www.starlink.com/updates/network-update.

[5]

Cheema MA, Chawla A, Gogineni VC, Rossi PS.Channel estimation in RIS-aided heterogeneous wireless networks via federated learning.IEEE Commun Lett 2025; 29(4):709-713.

[6]

Ding F, Bao C, Zhou D, Sheng M, Shi Y, Li J.Toward autonomous resource management architecture for 6G satellite–terrestrial integrated networks.IEEE Netw 2024; 38(2):113-121.

[7]

Galli A, Moscato V, Romano SP, Sperlí G.Playing with a multi armed bandit to optimize resource allocation in satellite-enabled 5G networks.IEEE Trans Netw Serv Manag 2024; 21(1):341-354.

[8]

Jiang C, Zhu X.Reinforcement learning based capacity management in multi-layer satellite networks.IEEE Trans Wirel Commun 2020; 19(7):4685-4699.

[9]

Liu H, Li T, Jiang F, Su W, Wang Z.Coverage optimization for large-scale mobile networks with digital twin and multi-agent reinforcement learning.IEEE Trans Wirel Commun 2024; 23(12):18316-18330.

[10]

Fu Y, Wang X.Traffic prediction-enabled energy-efficient dynamic computing resource allocation in CRAN based on deep learning.IEEE Open J Commun Soc 2022; 3:159-175.

[11]

Linty N, Farasin A, Favenza A, Dovis F.Detection of GNSS ionospheric scintillations based on machine learning decision tree.IEEE Trans Aerosp Electron Syst 2019; 55(1):303-317.

[12]

.Blackjack [Internet].Arlington: Defense Advanced Research Projects Agency (DARPA); [cited 2025 Aug 7]. Available from: https://www.darpa.mil/research/programs/blackjack/.

[13]

Wang S, Li Q, Xu M, Ma X, Zhou A, Sun Q.Tiansuan constellation: an open research platform.In: Proceedings of 2021 IEEE International Conference on Edge Computing; 2021 Sep 5–10; online. New York City: IEE E; 2021.

[14]

Jiang W.Software defined satellite networks: a survey.Digit Commun Netw 2023; 9(6):1243-1264.

[15]

Khalid M, Ali J, Roh BH.Artificial intelligence and machine learning technologies for integration of terrestrial in non-terrestrial networks.IEEE Int Things Mag 2024; 7(1):28-33.

[16]

Duong TQ, Nguyen LD, Bui TT, Pham KD, Karagiannidis GK.Machine learning-aided real-time optimized multibeam for 6G integrated satellite–terrestrial networks: global coverage for mobile services.IEEE Netw 2023; 37(2):86-93.

[17]

Li H, Ota K, Dong M.AI in SAGIN: building deep learning service-oriented space–air–ground integrated networks.IEEE Netw 2023; 37(2):154-159.

[18]

Jia M, Zhang X, Sun J, Gu X, Guo Q.Intelligent resource management for satellite and terrestrial spectrum shared networking toward B5G.IEEE Wirel Commun 2020; 27(1):54-61.

[19]

requirements and evaluation guidelines for satellite radio interface(s) of IMT-2020.Report.Geneva: International Telecommunication Union (ITU); 2022 Sep. Report No.: ITU-R M.2514-0.

[20]

International Telecommunication Union Radiocommunication Sector.Framework and overall objectives of the future development of IMT for 2030 and beyond.Geneva: International Telecommunication Union (ITU); 2023 Nov. No.: ITU-R M.2160-0.

[21]

.Service requirements for the 5G system; stage 1 (Release 17).Report. Valbonne: 3rd Generation Partnership Project (3GPP); 2020 Dec. Report No.: T S 22.261.

[22]

White paper on integrated terrestrial–satellite communication (ITSC).Beijing: China Information Communication Technologies (CICT) Group Corporation; 2023

[23]

Solutions for NRto support non-terrestrial networks (NTN) (Release 16).Technical report.Valbonne: 3rd Generation Partnership Project (3GPP); 2023 Mar. Report No.: T R 38.821.

[24]

Weiss G.Multiagent systems. (2nd ed.), MIT Press, Cambridge (2013)

[25]

Wang L, Zhou Y, Cao H, Liu Z, Chen Y, Chen D, et al.Resource management and scheduling for satellite Internet.Strateg Stud Chin Acad Eng 2023; 25(6):27-38.

[26]

Deng D, Wang C, Xu L, Jiang F, Guo K, Zhang Z.Semantic communication empowered NTN for IoT: benefits and challenges.IEEE Netw 2024; 38(4):32-39.

[27]

Wang X, Meng S, Qian Z.An overview of key technologies for intelligent access toward 6G full-domain convergence.J Electron Inf Technol 2024; 46(5):1613-1631.

[28]

Hauschildt H, Elia C, Moeller HL, Schmitt D.ScyLight—ESA’s secure and laser communication technology framework for SatCom.In: Proceedings of 2017 IEEE International Conference on Space Optical Systems and Applications; 2017 Nov 14–16; Naha, Japan. New York City: IEE E; 2017.

[29]

Project Kuiper [Internet]. Seattle: Amazon; c1996–2025 [2025 Aug 7]. Available from: https://www.aboutamazon.com/what-we-do/devices-services/project-kuiper/.

[30]

Zuo Y, Yue M, Yang H, Wu L, Yuan X.Integrating communication, sensing and computing in satellite Internet of Things: challenges and opportunities.IEEE Wirel Commun 2024; 31(3):332-338.

[31]

Lin Y, Feng W, Zhou T, Wang Y, Chen Y, Ge N.Integrating satellites and mobile edge computing for 6G wide-area edge intelligence: minimal structures and systematic thinking.IEEE Netw 2023; 37(2):14-21.

[32]

Zhang X, Liu J, Zhang R, Huang Y, Tong J, Xin N.Energy-efficient computation peer offloading in satellite edge computing networks.IEEE Trans Mobile Comput 2024; 23(4):3077-3091.

[33]

Huang T, Fang Z, Tang Q, Xie R, Chen T, Yu FR.Dual-timescales optimization of task scheduling and resource slicing in satellite–terrestrial edge computing networks.IEEE Trans Mobile Comput 2024; 23(12):14111-14126.

[34]

Kong Q, Qu X, Zhang S, Yin F, Lu R, Chen B.A secure satellite–edge computing framework for collaborative line outage identification in smart grid.IEEE Trans Serv Comput 2024; 17(3):761-775.

[35]

Gao Y, Yan Z, Zhao K, de TCola, Li W.Joint optimization of server and service selection in satellite–terrestrial integrated edge computing networks.IEEE Trans Veh Technol 2024; 73(2):2740-2754.

[36]

Hu J, Wang F, Xu W, Gao H, Zhang P.Scalable multi-task semantic communication system with feature importance ranking.In: Proceedings of 2023 IEEE International Conference on Acoustics, Speech and Signal Processing; 2023 Jun 4–10; Rhodes Island, Greece. New York City: IEE E; 2023.

[37]

Zhang Y, Zhong R, Liu Y, Xu W, Zhang P.Interference suppressed NOMA for semantic-aware communication networks.IEEE Trans Wirel Commun 2024; 23(8):10383-10397.

[38]

Lu K, Zhou Q, Li R, Zhao Z, Chen X, Wu J.Rethinking modern communication from semantic coding to semantic communication.IEEE Wirel Commun 2023; 30(1):158-164.

[39]

Liu Y, Guo R, Xu C, Weng X, Yang Y.A Q-learning-based fault-tolerant and congestion–aware adaptive routing algorithm for networks-on-chip.IEEE Embed Syst Lett 2022; 14(4):203-206.

[40]

Luong NC, Hoang DT, Gong S, Niyato D, Wang P, Liang YC.Applications of deep reinforcement learning in communications and networking: a survey.IEEE Commun Surv Tutor 2019; 21(4):3133-3174.

[41]

Wei H, Zhao Y, Xu K.G-Routing: graph neural networks-based flexible online routing.IEEE Netw 2023; 37(4):90-96.

[42]

Shen X, Gao J, Wu W, Lyu K, Li M, Zhuang W.AI-assisted network-slicing based next-generation wireless networks.IEEE Open J Veh Technol 2020; 1:45-66.

[43]

Saha N, Zangooei M, Golkarifard M, Boutaba R.Deep reinforcement learning approaches to network slice scaling and placement: a survey.IEEE Commun Mag 2023; 61(2):82-87.

[44]

Dutta N, Patole SP, Mahadeva R, Ghinea G.Federated learning framework for prediction based load distribution in 5G network slicing.In: Proceedings of the 16th International Conference on Contemporary Computing; 2024 Aug 8–10; Noida, India. New York City: IEE E; 2024.

[45]

Wu Y, Dai HN, Wang H, Xiong Z, Guo S.A survey of intelligent network slicing management for industrial IoT: integrated approaches for smart transportation, smart energy, and smart factory.IEEE Commun Surv Tutor 2022; 24(2):1175-1211.

[46]

Chen L, Tang F, Li X, Liu J, Zhu Y, Yu J.Adaptive network management service based on control relation graph for software-defined LEO satellite networks in 6G.IEEE Trans Serv Comput 2024; 17(6):3122-3139.

[47]

Zhang P, Xu W, Gao H, Niu K, Xu X, Qin X, et al.Toward wisdom-evolutionary and primitive-concise 6G: a new paradigm of semantic communication networks.Engineering 2022; 8:60-73.

[48]

Wang Z, Kang Y, Zeng X, et al.SAR-AIRcraft-1.0: high-resolution SAR aircraft detection and recognition dataset.J Radars 2023; 12(4):906-922.

[49]

Pandey N, Ram SS.Classification of automotive targets using inverse synthetic aperture radar images.IEEE Trans Intell Veh 2022; 7(3):675-689.

[50]

Hou X, Ren Z, Wang J, Cheng W, Ren Y, Chen KC.Reliable computation offloading for edge-computing-enabled software-defined IoV.IEEE Internet Things J 2020; 7(8):7097-7111.

AI Summary AI Mindmap
PDF (3232KB)

400

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/