Marine Structures: Future Trends and the Role of Universities

Preben Terndrup Pedersen

Engineering ›› 2015, Vol. 1 ›› Issue (1) : 131-138.

PDF(8482 KB)
PDF(8482 KB)
Engineering ›› 2015, Vol. 1 ›› Issue (1) : 131-138. DOI: 10.15302/J-ENG-2015004
Research
Research

Marine Structures: Future Trends and the Role of Universities

Author information +
History +

Abstract

This paper emphasizes some of the challenges and trends associated with the future development of marine structures. Its main focus is on ways to improve the efficiency of energy-consuming ships, and on design challenges related to energy-producing offshore structures. This paper also discusses the analysis tools that are most needed to enable sustainable designs for future ships and offshore structures. The last section of the paper contains thoughts on the role of universities in education, research, and innovation regarding marine structures. It discusses curriculum requirements for maritime-technology education, basic research activities, and international cooperation.

Keywords

marine structures / ships / offshore structures / curriculum / research activities

Cite this article

Download citation ▾
Preben Terndrup Pedersen. Marine Structures: Future Trends and the Role of Universities. Engineering, 2015, 1(1): 131‒138 https://doi.org/10.15302/J-ENG-2015004

References

[1]
International Maritime Organization. Prevention of air pollution from ships, MEPC 59/INF 10, <month>April</month> <?Pub Caret?>2009
[2]
P. T. Pedersen, J. J. Jensen. Marine structures: Consuming and producing energy. In: C. B. Hansen, ed. Engineering Challenges: Energy, Climate Change & Health. Copenhagen: Technical University of Denmark, 2009: 6–17
[3]
I. M. V. Andersen. Full scale measurements of the hydro-elastic response of large container ships for decision support (Dissertation for the Doctoral Degree). Copenhagen: Technical University of Denmark, 2014
[4]
European Maritime Safety Agency. Annual overview of marine casualties and incidents. 2014
[5]
O. M. Faltinsen. Hydrodynamics of High-speed Marine Vehicles. Cambridge: Cambridge University Press, 2005
[6]
Y. S. Wu, C. Tian. A non-linear hydroelasticity theory of ships and its application. In: Edwin Kreuzer, ed. IUTAM Symposium on Fluid-Structure Interaction in Ocean Engineering. Berlin, Heidelberg: Springer, 2007: 307–320
[7]
J. J. Jensen. Load and Global Strength. Amsterdam: Elsevier Science Publ., 2001
[8]
A. Mansour, D. Liu. Strength of Ships and Ocean Structures. Jersey City, USA: The Society of Naval Architects and Marine Engineers, 2008
[9]
P. T. Pedersen. Review and application of ship collision and grounding analysis procedures. Mar. Struct., 2010, 23(3): 241–262
[10]
F. Liu, W. Cui, X. Y. Li. China’s first deep manned submersible, JIAOLONG. Sci. China Earth Sci., 2010, 53(10): 1407–1410
[11]
J. J. Jensen. Extreme value predictions using Monte Carlo simulations with artificially increased load spectrum. Probabilist Eng. Mech., 2011, 26(2): 399–404
[12]
International Association of Oil & Gas Producers. Worldwide statistics for ship collisions against offshore oil installations during 1980¯2002. Risk Assessment Data Directory Report No. 434/16, 2010
[13]
A. F. de O. Falcão. Wave energy utilization: A review of technologies. Renew. Sust. Energ. Rev., 2010, 14(3): 899–918
Funding
 
AI Summary AI Mindmap
PDF(8482 KB)

Accesses

Citations

Detail

Sections
Recommended

/