A Novel Tele-Operated Flexible Robot Targeted for Minimally Invasive Robotic Surgery

Zheng Li, Jan Feiling, Hongliang Ren, Haoyong Yu

Engineering ›› 2015, Vol. 1 ›› Issue (1) : 73-78.

PDF(3530 KB)
PDF(3530 KB)
Engineering ›› 2015, Vol. 1 ›› Issue (1) : 73-78. DOI: 10.15302/J-ENG-2015011
Research
Research

A Novel Tele-Operated Flexible Robot Targeted for Minimally Invasive Robotic Surgery

Author information +
History +

Abstract

In this paper, a novel flexible robot system with a constrained tendon-driven serpentine manipulator (CTSM) is presented. The CTSM gives the robot a larger workspace, more dexterous manipulation, and controllable stiffness compared with the da Vinci surgical robot and traditional flexible robots. The robot is tele-operated using the Novint Falcon haptic device. Two control modes are implemented, direct mapping and incremental mode. In each mode, the robot can be manipulated using either the highest stiffness scheme or the minimal movement scheme. The advantages of the CTSM are shown by simulation and experimental results.

Keywords

surgical robot / flexible manipulator / tendon-driven / minimally invasive robotic surgery

Cite this article

Download citation ▾
Zheng Li, Jan Feiling, Hongliang Ren, Haoyong Yu. A Novel Tele-Operated Flexible Robot Targeted for Minimally Invasive Robotic Surgery. Engineering, 2015, 1(1): 73‒78 https://doi.org/10.15302/J-ENG-2015011

References

[1]
H. Ren,  Computer-assisted transoral surgery with flexible robotics and navigation technologies: A review of recent progress and research challenges. Crit. Rev. Biomed. Eng., 2013, 41(4¯5): 365–391
[2]
Medgadget LLC. Intuitive’s new da Vinci Sp single port minimally invasive robotic system (VIDEO). 2014-<month>04</month>-<day>23</day>. http://www.medgadget.com/2014/04/intuitives-new-da-vinci-sp-single-port-minimally-invasive-robotic-system-video.html
[3]
Z. Li, R. Du. Design and analysis of a bio-inspired wire-driven multi-section flexible robot. Int. J. Adv. Robot. Syst., 2013, 10: 1–9
[4]
Z. Li, R. Du, M. C. Lei, S. M. Yuan. Design and analysis of a biomimetic wire-driven robot arm. In: Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, 2011: 191–198
[5]
K. Xu, J. Zhao, M. Fu. Development of the SJTU unfoldable robotic system (SURS) for single port laparoscopy. IEEE/ASME Trans. Mechatron., 2014(99): 1–13
[6]
N. Simaan, R. Taylor, P. Flint. A dexterous system for laryngeal surgery. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 1. IEEE, 2004: 351–357
[7]
J. Burgner,  A telerobotic system for transnasal surgery. IEEE/ASME Trans. Mechatron., 2013, 19(3): 996–1006
[8]
P. E. Dupont, J. Lock, B. Itkowitz, E. Butler. Design and control of concentric-tube robots. IEEE Trans. Robot., 2010, 26(2): 209–225
[9]
G. Lum, S. Mustafa, H. Lim, W. Lim, G. Yang, S. Yeo. Design and motion control of a cable-driven dexterous robotic arm. In: Proceedings of IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (STUDENT). IEEE, 2010: 106–111
[10]
A. Degani, H. Choset, A. Wolf, M. A. Zenati. Highly articulated robotic probe for minimally invasive surgery. In: Proceedings of IEEE International Conference on Robotics and Automation. IEEE, 2006: 4167–4172
[11]
Z. Li, R. Du. Expanding workspace of underactuated flexible manipulator by actively deploying constrains. In: Proceedings of IEEE International Conference on Robotics and Automation. IEEE, 2014: 2901–2906
[12]
Z. Li, H. Yu, H. Ren. A novel underactuated wire-driven flexible robotic arm with controllable bending section length (abstract). In: ICRA 2014 Workshop on Advances in Flexible Robots for Surgical Interventions, 2014: 11
[13]
Z. Li, R. Du, H. Yu, H. Ren. Statics modeling of an underactuated wire-driven flexible robotic arm. In: Proceedings of IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE, 2014: 326–331
[14]
Novint Falcon haptic device. [2014-<month>03</month>-<day>11</day>]. http://www.novint.com/index.php/novintfalcon
[15]
J. Feiling, Z. Li, H. Ren, H. Yu. The constrained tendon-driven serpentine manipulator and its optimal control using novint falcon. In: The 28th Canadian Conference on Electrical and Computer Engineering, 2015 (in press)
[16]
K. Klein, J. Neira. Nelder-Mead simplex optimization routine for large-scale problems: A distributed memory implementation. Comput. Econ., 2014, 43(4): 447–461

Acknowledgements

Research supported by FRC Tier I grants R397000156112 and R397000157112, National University of Singapore.
Compliance with ethics guidelines
Zheng Li, Jan Feiling, Hongliang Ren, and Haoyong Yu declare that they have no conflict of interest or financial conflicts to disclose.
Funding
 
AI Summary AI Mindmap
PDF(3530 KB)

Accesses

Citations

Detail

Sections
Recommended

/