
A Micromotor Catheter for Intravascular Optical Coherence Tomography
Tianshi Wang, Gijs van Soest, Antonius F. W. van der Steen
Engineering ›› 2015, Vol. 1 ›› Issue (1) : 15-17.
A Micromotor Catheter for Intravascular Optical Coherence Tomography
We have developed a new form of intravascular optical coherence tomography (IV-OCT) that allows the extremely fast acquisition of high-resolution images of the coronary arteries. This process leads to much better image quality by eliminating cardiac motion artefacts and undersampling. It relies on a catheter that incorporates a synchronous micromotor with a diameter of 1.0 mm and a rotational speed of up to 5600 revolutions per second, enabling an IV-OCT frame rate of 5.6 kHz. This speed is matched by a wavelength-swept laser that generates up to 2.8 million image lines per second. With this setup, our team achieved IV-OCT imaging of up to 5600 frames per second (fps) in vitro and 4000 fps in vivo, deployed at a 100 mm·s−1 pullback velocity. The imaging session is triggered by the electrocardiogram of the subject, and can scan a coronary artery in the phase of the heartbeat where the heart is at rest, providing a name for this new technology: the “Heartbeat OCT.”
[1] |
T. Okamura, Y. Onuma, H. M. Garcia-Garcia, N. Bruining, P. W. Serruys. High-speed intracoronary optical frequency domain imaging: Implications for three-dimensional reconstruction and quantitative analysis. EuroIntervention, 2012, 7(10): 1216–1226
|
[2] |
V. Farooq,
|
[3] |
T. Wang,
|
[4] |
W. Wieser,
|
[5] |
T. Wang,
|
[6] |
T. S. Wang. Heartbeat optical coherence tomography (PhD Thesis). Rotterdam: Erasmus MC, 2015
|
/
〈 |
|
〉 |