Metamaterials: Reshape and Rethink

Ruopeng Liu, Chunlin Ji, Zhiya Zhao, Tian Zhou

Engineering ›› 2015, Vol. 1 ›› Issue (2) : 179-184.

PDF(1318 KB)
PDF(1318 KB)
Engineering ›› 2015, Vol. 1 ›› Issue (2) : 179-184. DOI: 10.15302/J-ENG-2015036
Research
Research

Metamaterials: Reshape and Rethink

Author information +
History +

Abstract

Metamaterials are composite materials whose material properties (acoustic, electrical, magnetic, or optical, etc.) are determined by their constitutive structural materials, especially the unit cells. The development of metamaterials continues to redefine the boundaries of materials science. In the field of electromagnetic research and beyond, these materials offer excellent design flexibility with their customized properties and their tunability under external stimuli. In this paper, we first provide a literature review of metamaterials with a focus on the technology and its evolution. We then discuss steps in the industrialization process and share our own experience.

Keywords

metamaterials / metasurface / smart structure / metadevices / industrialization

Cite this article

Download citation ▾
Ruopeng Liu, Chunlin Ji, Zhiya Zhao, Tian Zhou. Metamaterials: Reshape and Rethink. Engineering, 2015, 1(2): 179‒184 https://doi.org/10.15302/J-ENG-2015036

References

[1]
J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 2000, 85(18): 3966−3969
[2]
D. R. Smith, J. B. Pendry, M. C. K. Wiltshire. Metamaterials and negative refractive index. Science, 2004, 305(5685): 788−792
[3]
D. Schurig, Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977−980
[4]
A. Alù, N. Engheta. Plasmonic and metamaterial cloaking: Physical mechanisms and potentials. J. Opt. A: Pure Appl. Opt., 2008, 10(9): 093002
[5]
A. Alù, N. Engheta. Plasmonic materials in transparency and cloaking problems: Mechanism, robustness, and physical insights. Opt. Express, 2007, 15(6): 3318−3332
[6]
R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, D. R. Smith. Broadband ground-plane cloak. Science, 2009, 323(5912): 366−369
[7]
R. M. Walser. Electromagnetic metamaterials. In: A. Lakhtakia, W. S. Weiglhofer, I. J. Hodgkinson, eds. SPIE Proceedings Vol. 4467, Complex Mediums II: Beyond Linear Isotropic Dielectrics. San Diego: SPIE Proceedings, 2001: 1−15
[8]
C. G. Parazzoli, R. B. Greegor, K. Li, B. E. Koltenbah, M. Tanielian. Experimental verification and simulation of negative index of refraction using Snell’s law. Phys. Rev. Lett., 2003, 90(10): 107401
[9]
M. Li, N. Behdad. Frequency selective surfaces for pulsed high-power microwave applications. IEEE T. Antenn. Propag., 2013, 61(2): 677−687
[10]
C. H. Liu, N. Behdad. Investigating the impact of microwave breakdown on the responses of high-power microwave metamaterials. IEEE T. Plasma Sci., 2013, 41(10): 2992−3000
[11]
C. H. Liu, J. D. Neher, J. H. Booske, N. Behdad. Investigating the physics of simultaneous breakdown events in high-power-microwave (HPM) metamaterials with multiresonant unit cells and discrete nonlinear responses. IEEE T. Plasma Sci., 2014, 42(5): 1255−1264
[12]
S. Sajuyigbe, M. Ross, P. Geren, S. A. Cummer, M. H. Tanielian, D. R. Smith. Wide angle impedance matching metamaterials for waveguide-fed phased-array antennas. IET Microw. Antenna. P., 2010, 4(8): 1063−1072
[13]
U. Leonhardt. Optical conformal mapping. Science, 2006, 312(5781): 1777−1780
[14]
J. B. Pendry, D. Schurig, D. R. Smith. Controlling electromagnetic fields. Science, 2006, 312(5781): 1780−1782
[15]
B. Edwards, A. Alù, M. G. Silveirinha, N. Engheta. Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. Phys. Rev. Lett., 2009, 103(15): 153901
[16]
N. Fang, H. Lee, C. Sun, X. Zhang. Sub-diffraction-limited optical imaging with a silver superlens. Science, 2005, 308(5721): 534−537
[17]
B. A. Munk. Frequency Selective Surfaces: Theory and Design. New York: John Wiley & Sons, Inc., 2005
[18]
R. Mittra, C. H. Chan, T. Cwik. Techniques for analyzing frequency selective surfaces—A review. Proc. IEEE, 1988, 76(12): 1593−1615
[19]
R. W. Ziolkowski, A. D. Kipple. Application of double negative materials to increase the power radiated by electrically small antennas. IEEE T. Antenn. Propag., 2003, 51(10): 2626−2640
[20]
S. Clavijo, R. E. Diaz, W. E. McKinzie. Design methodology for Sievenpiper high-impedance surfaces: An artificial magnetic conductor for positive gain electrically small antennas. IEEE T. Antenn. Propag., 2003, 51(10): 2678−2690
[21]
F. Yang, Y. Rahmat-Samii. Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications. IEEE T. Antenn. Propag., 2003, 51(10): 2691−2703
[22]
D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, G. Tangonan. Two-dimensional beam steering using an electrically tunable impedance surface. IEEE T. Antenn. Propag., 2003, 51(10): 2713−2722
[23]
F. Yang, Y. Rahmat-Samii. Electromagnetic Band Gap Structures in Antenna Engineering. Cambridge, UK: Cambridge University Press, 2008
[24]
R. W. Ziolkowski, P. Jin, C. C. Lin. Metamaterial-inspired engineering of antennas. Proc. IEEE, 2011, 99(10): 1720−1731
[25]
C. Caloz, T. Itoh. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. Portland, OR: Wiley-IEEE Press, 2005
[26]
A. Grbic, G. V. Eleftheriades. Experimental verification of backward-wave radiation from a negative refractive index metamaterial. J. Appl. Phys., 2002, 92(10): 5930−5935
[27]
L. Liu, C. Caloz, T. Itoh. Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability. Electron. Lett., 2002, 38(23): 1414−1416
[28]
R. W. Ziolkowski. Metamaterials: The early years in the USA. EPJ Appl. Metamat., 2014, 1: 5
[29]
C. M. Soukoulis, S. Linden, M. Wegener. Physics. Negative refractive index at optical wavelengths. Science, 2007, 315(5808): 47−49
[30]
C. M. Soukoulis, M. Wegener. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics, 2011, 5(9): 523−530
[31]
X. Zhang, Z. Liu. Superlenses to overcome the diffraction limit. Nat. Mater., 2008, 7(6): 435−441
[32]
J. Rho, Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nat. Commun., 2010, 1(9): 143
[33]
G. Dolling, M. Wegener, C. M. Soukoulis, S. Linden. Negative-index metamaterial at 780 nm wavelength. Opt. Lett., 2007, 32(1): 53−55
[34]
T. Hand, S. Cummer. Characterization of tunable metamaterial elements using MEMS switches. IEEE Antenn. Wirel. Pr., 2007, 6(11): 401−404
[35]
H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, R. D. Averitt. Reconfigurable terahertz metamaterials. Phys. Rev. Lett., 2009, 103(14): 147401
[36]
B. Ozbey, O. Aktas. Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers. Opt. Express, 2011, 19(7): 5741−5752
[37]
T. S. Kasirga, Y. N. Ertas, M. Bayindir. Microfluidics for reconfigurable electromagnetic metamaterials. Appl. Phys. Lett., 2009, 95(21): 214102
[38]
H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt. Active terahertz metamaterial devices. Nature, 2006, 444(7119): 597−600
[39]
R. C. McPhedran, I. V. Shadrivov, B. T. Kuhlmey, Y. S. Kivshar. Metamaterials and metaoptics. NPG Asia Mater., 2011, 3: 100−108
[40]
S. Guenneau, R. C. McPhedran, S. Enoch, A. B. Movchan, M. Farhat, N. A. P. Nicorovici. The colours of cloaks. J. Opt., 2011, 13(2): 024014
[41]
M. Kadic, T. Bückmann, R. Schittny, M. Wegener. Metamaterials beyond electromagnetism. Rep. Prog. Phys., 2013, 76(12): 126501
[42]
K. Sato, T. Nomura, S. Matsuzawa, H. Iizuka. Metamaterial techniques for automotive applications. In: PIERS proceedings. Hangzhou, China, 2008: 1122−1125
[43]
F. Fitzek, R. H. Rasshofer, E. M. Biebl. Metamaterial matching of high-permittivity coatings for 79 GHz radar sensors. In: Proceedings of 2010 European Microwave Conference (EuMC). London: Horizon House Publications Ltd., 2010: 1401−1404
[44]
K. M. Palmer. Metamaterials make for a broadband breakthrough. IEEE Spectrum, 2012, 49(1): 13−14
[45]
N. Kundtz. Next generation communications for next generation satellites. Microwave J., 2014, 57(8): 14
[46]
K. M. Alam, A. P. Singh, R. Starko-Bowes, S. C. Bodepudi, S. Pramanik. Template-assisted synthesis of π-conjugated molecular organic nanowires in the sub-100 nm regime and device implications. Adv. Funct. Mater., 2012, 22(15): 3298−3306
[47]
R. Starko-Bowes, S. Pramanik. Ultrahigh density array of vertically aligned small-molecular organic nanowires on arbitrary substrates. J. Vis. Exp., 2013 (76): e50706
[48]
D. J. Shelton, Strong coupling between nanoscale metamaterials and phonons. Nano Lett., 2011, 11(5): 2104−2108
[49]
D. Shelton. Tunable infrared metamaterials (Doctoral dissertation). Orlando, FL: University of Central Florida, 2010
[50]
J. B. Pendry, D. R. Smith. Reversing light with negative refraction. Phys. Today, 2004, 57(6): 37−43
[51]
A. Bhattacharya. Modeling and simulation of metamaterial-based devices for industrial applications. 2013-<month>09</month>-<day>26</day>. https://www.cst.com/Applications/Article/Simulating-Metamaterial-Based-Devices-Industry

Acknowledgement

This study was supported by Guangdong Innovative Research Team Program (2009010005).
Compliance with ethics guidelines
Ruopeng Liu, Chunlin Ji, Zhiya Zhao, and Tian Zhou declare that they have no conflict of interest or financial conflicts to disclose.
Funding
 
AI Summary AI Mindmap
PDF(1318 KB)

Accesses

Citations

Detail

Sections
Recommended

/