
High-Throughput Screening Using Fourier-Transform Infrared Imaging
Erdem Sasmaz, Kathleen Mingle, Jochen Lauterbach
Engineering ›› 2015, Vol. 1 ›› Issue (2) : 234-242.
High-Throughput Screening Using Fourier-Transform Infrared Imaging
Efficient parallel screening of combinatorial libraries is one of the most challenging aspects of the high-throughput (HT) heterogeneous catalysis workflow. Today, a number of methods have been used in HT catalyst studies, including various optical, mass-spectrometry, and gas-chromatography techniques. Of these, rapid-scanning Fourier-transform infrared (FTIR) imaging is one of the fastest and most versatile screening techniques. Here, the new design of the 16-channel HT reactor is presented and test results for its accuracy and reproducibility are shown. The performance of the system was evaluated through the oxidation of CO over commercial Pd/Al2O3 and cobalt oxide nanoparticles synthesized with different reducer-reductant molar ratios, surfactant types, metal and surfactant concentrations, synthesis temperatures, and ramp rates.
high-throughput / FTIR imaging / screening / cobalt oxide / CO oxidation
[1] |
Anon. Recognizing the best in innovation: Breakthrough catalyst. R&D Magazine, 2005, September: 20
|
[2] |
M. Baerns, M. Holeňa. Approaches in the development of heterogeneous catalysts. In: M. Baerns, M. Holeňa, eds. Combinatorial Development of Solid Catalytic Materials: Design of High-Throughput Experiments, Data Analysis, Data Mining. London: Imperial College Press, 2009: 7−20
|
[3] |
A. Jain,
|
[4] |
H. Shibata,
|
[5] |
H. W. Turner, A. F. Volpe Jr., W. H. Weinberg. High-throughput heterogeneous catalyst research. Surf. Sci., 2009, 603(10−12): 1763−1769
|
[6] |
I. E. Maxwell, P. van den Brink, R. S. Downing, A. H. Sijpkes, S. Gomez, Th. Maschmeyer. High-throughput technologies to enhance innovation in catalysis. Top. Catal., 2003, 24(1−4): 125−135
|
[7] |
W. F. Maier, K. Stöwe, S. Sieg. Combinatorial and high-throughput materials science. Angew. Chem. Int. Ed. Engl., 2007, 46(32): 6016−6067
|
[8] |
D. Farrusseng. High-throughput heterogeneous catalysis. Surf. Sci. Rep., 2008, 63(11): 487−513
|
[9] |
R. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chisholm, H. Lam. Combinatorial and high-throughput screening of materials libraries: Review of state of the art. ACS Comb. Sci., 2011, 13(6): 579−633
|
[10] |
J. P. Holdren. Materials Genome Initiative for Global Competitiveness. Washington, DC: National Science and Technology Council, 2011
|
[11] |
D. D. Devore, R. M. Jenkins. Impact of high throughput experimentation on homogeneous catalysis research. Comment. Inorg. Chem., 2014, 34(1−2): 17−41
|
[12] |
J. Lauterbach, E. Sasmaz, J. Bedenbaugh, S. Kim, J. Hattrick-Simpers. Discovery and optimization of coking and sulfur resistant Bi-metallic catalyst for cracking JP-8: From thin film libraries to single powders. In: A. Hagemeyer, A. F. Volpe Jr., eds. Modern Applications of High Throughput R&D in Heterogeneous Catalysis. Sharjah: Bentham Science Publishers, 2014: 89−117
|
[13] |
S. Senkan. Combinatorial heterogeneous catalysis—A new path in an old field. Angew. Chem. Int. Ed. Engl., 2001, 40(2): 312−329
|
[14] |
J. R. Ebner, M. R. Thompson. An active site hypothesis for well-crystallized vanadium phosphorus oxide catalyst systems. Catal. Today, 1993, 16(1): 51−60
|
[15] |
R. Schlögl. Combinatorial chemistry in heterogeneous catalysis: A new scientific approach or “the King’s New Clothes”? Angew. Chem. Int. Edit., 1998, 37(17): 2333−2336
|
[16] |
U. Rodemerck, M. Baerns, M. Holena, D. Wolf. Application of a genetic algorithm and a neural network for the discovery and optimization of new solid catalytic materials. Appl. Surf. Sci., 2004, 223(1−3): 168−174
|
[17] |
J. M. Caruthers,
|
[18] |
Y. Yang, T. Lin, X. L. Weng, J. A. Darr, X. Z. Wang. Data flow modeling, data mining and QSAR in high-throughput discovery of functional nanomaterials. Comput. Chem. Eng., 2011, 35(4): 671−678
|
[19] |
A. G. Maldonado, G. Rothenberg. Predictive modeling in catalysis—From dream to reality. Chem. Eng. Prog., 2009, 105(6): 26−32
|
[20] |
G. Rothenberg. Data mining in catalysis: Separating knowledge from garbage. Catal. Today, 2008, 137(1): 2−10
|
[21] |
J. M. Serra, A. Corma, A. Chica, E. Argente, V. Botti. Can artificial neural networks help the experimentation in catalysis? Catal. Today, 2003, 81(3): 393−403
|
[22] |
J. M. Serra, A. Corma, E. Argente, S. Valero, V. Botti. Neural networks for modelling of kinetic reaction data applicable to catalyst scale up and process control and optimisation in the frame of combinatorial catalysis. Appl. Catal. A Gen., 2003, 254(1): 133−145
|
[23] |
H. U. Gremlich. The use of optical spectroscopy in combinatorial chemistry. Biotechnol. Bioeng., 1998/1999, 61(3): 179−187
|
[24] |
S. Schmatloch, M. A. R. Meier, U. S. Schubert. Instrumentation for combinatorial and high-throughput polymer research: A short overview. Macromol. Rapid Comm., 2003, 24(1): 33−46
|
[25] |
Y. Zhang, X. Gong, H. Zhang, R. C. Larock, E. S. Yeung. Combinatorial screening of homogeneous catalysis and reaction optimization based on multiplexed capillary electrophoresis. J. Comb. Chem., 2000, 2(5): 450−452
|
[26] |
N. E. Olong, K. Stöwe, W. F. Maier. A combinatorial approach for the discovery of low temperature soot oxidation catalysts. Appl. Catal. B Environ., 2007, 74(1−2): 19−25
|
[27] |
F. C. Moates, M. Somani, J. Annamalai, J. T. Richardson, D. Luss, R. C. Willson. Infrared thermographic screening of combinatorial libraries of heterogeneous catalysts. Ind. Eng. Chem. Res., 1996, 35(12): 4801−4803
|
[28] |
A. Holzwarth, H. W. Schmidt, W. F. Maier. Detection of catalytic activity in combinatorial libraries of heterogeneous catalysts by IR thermography. Angew. Chem. Int. Edit., 1998, 37(19): 2644−2647
|
[29] |
C. Brooks,
|
[30] |
S. J. Taylor, J. P. Morken. Thermographic selection of effective catalysts from an encoded polymer-bound library. Science, 1998, 280(5361): 267−270
|
[31] |
J. Klein,
|
[32] |
N. Na, S. Zhang, X. Wang, X. Zhang. Cataluminescence-based array imaging for high-throughput screening of heterogeneous catalysts. Anal. Chem., 2009, 81(6): 2092−2097
|
[33] |
M. Breysse, B. Claudel, L. Faure, M. Guenin, R. J. J. Williams. Chemiluminescence during the catalysis of carbon monoxide oxidation on a thoria surface. J. Catal., 1976, 45(2): 137−144
|
[34] |
H. Su, E. S. Yeung. High-throughput screening of heterogeneous catalysts by laser-induced fluorescence imaging. J. Am. Chem. Soc., 2000, 122(30): 7422−7423
|
[35] |
H. Su, Y. Hou, R. S. Houk, G. L. Schrader, E. S. Yeung. Combinatorial screening of heterogeneous catalysis in selective oxidation of naphthalene by laser-induced fluorescence imaging. Anal. Chem., 2001, 73(18): 4434−4440
|
[36] |
S. M. Senkan. High-throughput screening of solid-state catalyst libraries. Nature, 1998, 394(6691): 350−353
|
[37] |
S. M. Senkan, S. Ozturk. Discovery and optimization of heterogeneous catalysts by using combinatorial chemistry. Angew. Chem. Int. Edit., 1999, 38(6): 791−795
|
[38] |
P. Cong,
|
[39] |
S. Senkan, K. Krantz, S. Ozturk, V. V. Zengin, I. I. Onal. High-throughput testing of heterogeneous catalyst libraries using array microreactors and mass spectrometry. Angew. Chem. Int. Ed. Engl., 1999, 38(18): 2794−2799
|
[40] |
H. Wang, Z. Liu, J. Shen. Quantified MS analysis applied to combinatorial heterogeneous catalyst libraries. J. Comb. Chem., 2003, 5(6): 802−808
|
[41] |
M. Richter,
|
[42] |
A. Hagemeyer,
|
[43] |
S. Gomez, J. A. Peters, J. C. van der Waal, T. Maschmeyer. High-throughput experimentation as a tool in catalyst design for the reductive amination of benzaldehyde. Appl. Catal. A Gen., 2003, 254(1): 77−84
|
[44] |
C. Hoffmann, H. W. Schmidt, F. Schüth. A multipurpose parallelized 49-channel reactor for the screening of catalysts: Methane oxidation as the example reaction. J. Catal., 2001, 198(2): 348−354
|
[45] |
M. Lucas, P. Claus. High throughput screening in monolith reactors for total oxidation reactions. Appl. Catal. A Gen., 2003, 254(1): 35−43
|
[46] |
C. Kiener. High-throughput screening under demanding conditions: Cu/ZnO catalysts in high pressure methanol synthesis as an example. J. Catal., 2003, 216(1−2): 110−119
|
[47] |
J. E. Bedenbaugh, S. Kim, E. Sasmaz, J. Lauterbach. High-throughput investigation of catalysts for JP-8 fuel cracking to liquefied petroleum gas. ACS Comb. Sci., 2013, 15(9): 491−497
|
[48] |
O. Trapp. Boosting the throughput of separation techniques by “multiplexing”. Angew. Chem. Int. Ed. Engl., 2007, 46(29): 5609−5613
|
[49] |
O. Trapp. Gas chromatographic high-throughput screening techniques in catalysis. J. Chromatogr. A, 2008, 1184(1−2): 160−190
|
[50] |
R. R. Ernst, W. A. Anderson. Application of Fourier transform spectroscopy to magnetic resonance. Rev. Sci. Instrum., 1966, 37(1): 93−102
|
[51] |
M. B. Comisarow, A. G. Marshall. Fourier transform ion cyclotron resonance spectroscopy. Chem. Phys. Lett., 1974, 25(2): 282−283
|
[52] |
O. Trapp, J. R. Kimmel, O. K. Yoon, I. A. Zuleta, F. M. Fernandez, R. N. Zare. Continuous two-channel time-of-flight mass spectrometric detection of electrosprayed ions. Angew. Chem. Int. Ed. Engl., 2004, 43(47): 6541−6544
|
[53] |
E. N. Lewis,
|
[54] |
C. M. Snively, G. Oskarsdottir, J. Lauterbach. Chemically sensitive high throughput parallel analysis of solid phase supported library members. J. Comb. Chem., 2000, 2(3): 243−245
|
[55] |
C. M. Snively, G. Oskarsdottir, J. Lauterbach. Parallel analysis of the reaction products from combinatorial catalyst libraries. Angew. Chem. Int. Ed. Engl., 2001, 40(16): 3028−3030
|
[56] |
C. M. Snively, S. Katzenberger, G. Oskarsdottir, J. Lauterbach. Fourier-transform infrared imaging using a rapid-scan spectrometer. Opt. Lett., 1999, 24(24): 1841−1843
|
[57] |
C. M. Snively, G. Oskarsdottir, J. Lauterbach. Chemically sensitive parallel analysis of combinatorial catalyst libraries. Catal. Today, 2001, 67(4): 357−368
|
[58] |
C. M. Snively, J. Lauterbach, M. Christopher. Sampling accessories for HTE of combinatorial libraries using spectral imaging. Spectroscopy, 2002, 17(4), 26−33
|
[59] |
R. J. Hendershot, W. B. Rogers, C. M. Snively, B. Ogunnaike, J. Lauterbach. Development and optimization of NOx storage and reduction catalysts using statistically guided high-throughput experimentation. Catal. Today, 2004, 98(3): 375−385
|
[60] |
R. J. Hendershot, R. Vijay, C. M. Snively, J. Lauterbach. High-throughput study of the performance of storage and reduction catalysts as a function of cycling conditions and catalyst composition. Chem. Eng. Sci., 2006, 61(12): 3907−3916
|
[61] |
R. Vijay,
|
[62] |
B. J. Feist. High throughput experimentation and microkinetic modeling (Master’s thesis). Newark, DE: University of Delaware, 2006
|
[63] |
D. W. Fickel, E. D’Addio, J. A. Lauterbach, R. F. Lobo. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Appl. Catal. B Environ., 2011, 102(3−4): 441−448
|
[64] |
J. C. Dellamorte, J. Lauterbach, M. A. Barteau. Effect of preparation conditions on Ag catalysts for ethylene epoxidation. Top. Catal., 2010, 53(1−2): 13−18
|
[65] |
J. C. Dellamorte, J. Lauterbach, M. A. Barteau. Palladium-silver bimetallic catalysts with improved activity and selectivity for ethylene epoxidation. Appl. Catal. A Gen., 2011, 391(1−2): 281−288
|
[66] |
E. D’Addio. High throughput Investigation of supported catalysts for COx-free hydrogen production from ammonia decomposition (Doctoral dissertation). Newark, DE: University of Delaware, 2011
|
[67] |
S. Salim. Development of high-throughput catalyst screening for ammonia based selective catalytic reduction of nitric oxide with parallel analysis using Fourier transform infrared imaging (Master’s thesis). Columbia, SC: University of South Carolina, 2013
|
[68] |
P. Kubanek, O. Busch, S. Thomson, H. W. Schmidt, F. Schüth. Imaging reflection IR spectroscopy as a tool to achieve higher integration for high-throughput experimentation in catalysis research. J. Comb. Chem., 2004, 6(3): 420−425
|
[69] |
K. L. A. Chan, S. G. Kazarian. FTIR spectroscopic imaging of dissolution of a solid dispersion of nifedipine in poly(ethylene glycol). Mol. Pharm., 2004, 1(4): 331−335
|
[70] |
K. L. A. Chan, S. G. Kazarian. New opportunities in micro- and macro-attenuated total reflection infrared spectroscopic imaging: Spatial resolution and sampling versatility. Appl. Spectrosc., 2003, 57(4): 381−389
|
[71] |
K. L. A. Chan, S. G. Kazarian, A. Mavraki, D. R. Williams. Fourier transform infrared imaging of human hair with a high spatial resolution without the use of a synchrotron. Appl. Spectrosc., 2005, 59(2): 149−155
|
[72] |
K. L. A. Chan, S. G. Kazarian. High-throughput study of poly(ethylene glycol)/ibuprofen formulations under controlled environment using FTIR imaging. J. Comb. Chem., 2006, 8(1): 26−31
|
[73] |
R. J. Hendershot,
|
[74] |
S. S. Lasko. Quantitative high-throughput studies of catalyst libraries (Master’s thesis). West Lafayette, IN: Purdue University, 2002
|
[75] |
Anon. GRAMS/AITM with PLSplus/IQ add-on. Waltham, MA: Thermo Fischer Scientific Inc., 2009
|
[76] |
N. Wu, L. Fu, M. Su, M. Aslam, K. C. Wong, V. P. Dravid. Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Lett., 2004, 4(2): 383−386
|
[77] |
C. Wen, X. Zhang, S. E. Lofland, J. Lauterbach, J. Hattrick-Simpers. Synthesis of mono-disperse CoFe alloy nanoparticles with high activity toward NaBH4 hydrolysis. Int. J. Hydrogen Energy, 2013, 38(15): 6436−6441
|
[78] |
D. C. Montgomery. Design and Analysis of Experiments. 3rd ed. Somerset, NJ: John Wiley & Sons, Inc., 1991
|
[79] |
L. V. Azaroff, M. J. Buerger. The Powder Method in X-Ray Crystallography. New York: McGraw-Hill, 1958
|
[80] |
N. F. M. Henry, H. Lipson, W. A. Wooster. The Interpretation of X-Ray Diffraction Photographs. London: MacMillon, 1961
|
[81] |
Anon. Minitab 17 statistical software. State College, PA: Minitab, Inc., 2010
|
/
〈 |
|
〉 |