High-Throughput Screening Using Fourier-Transform Infrared Imaging

Erdem Sasmaz, Kathleen Mingle, Jochen Lauterbach

Engineering ›› 2015, Vol. 1 ›› Issue (2) : 234-242.

PDF(1065 KB)
PDF(1065 KB)
Engineering ›› 2015, Vol. 1 ›› Issue (2) : 234-242. DOI: 10.15302/J-ENG-2015040
Research
Research

High-Throughput Screening Using Fourier-Transform Infrared Imaging

Author information +
History +

Abstract

Efficient parallel screening of combinatorial libraries is one of the most challenging aspects of the high-throughput (HT) heterogeneous catalysis workflow. Today, a number of methods have been used in HT catalyst studies, including various optical, mass-spectrometry, and gas-chromatography techniques. Of these, rapid-scanning Fourier-transform infrared (FTIR) imaging is one of the fastest and most versatile screening techniques. Here, the new design of the 16-channel HT reactor is presented and test results for its accuracy and reproducibility are shown. The performance of the system was evaluated through the oxidation of CO over commercial Pd/Al2O3 and cobalt oxide nanoparticles synthesized with different reducer-reductant molar ratios, surfactant types, metal and surfactant concentrations, synthesis temperatures, and ramp rates.

Keywords

high-throughput / FTIR imaging / screening / cobalt oxide / CO oxidation

Cite this article

Download citation ▾
Erdem Sasmaz, Kathleen Mingle, Jochen Lauterbach. High-Throughput Screening Using Fourier-Transform Infrared Imaging. Engineering, 2015, 1(2): 234‒242 https://doi.org/10.15302/J-ENG-2015040

References

[1]
Anon. Recognizing the best in innovation: Breakthrough catalyst. R&D Magazine, 2005, September: 20
[2]
M. Baerns, M. Holeňa. Approaches in the development of heterogeneous catalysts. In: M. Baerns, M. Holeňa, eds. Combinatorial Development of Solid Catalytic Materials: Design of High-Throughput Experiments, Data Analysis, Data Mining. London: Imperial College Press, 2009: 7−20
[3]
A. Jain, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mat., 2013, 1(1): 011002
[4]
H. Shibata, Heterogeneous catalysis high throughput workflow: A case study involving propane oxidative dehydrogenation. In: A. Hagemeyer, A. F. Volpe Jr., eds. Modern Applications of High Throughput R&D in Heterogeneous Catalysis. Sharjah: Bentham Science Publishers, 2014: 173−196
[5]
H. W. Turner, A. F. Volpe Jr., W. H. Weinberg. High-throughput heterogeneous catalyst research. Surf. Sci., 2009, 603(10−12): 1763−1769
[6]
I. E. Maxwell, P. van den Brink, R. S. Downing, A. H. Sijpkes, S. Gomez, Th. Maschmeyer. High-throughput technologies to enhance innovation in catalysis. Top. Catal., 2003, 24(1−4): 125−135
[7]
W. F. Maier, K. Stöwe, S. Sieg. Combinatorial and high-throughput materials science. Angew. Chem. Int. Ed. Engl., 2007, 46(32): 6016−6067
[8]
D. Farrusseng. High-throughput heterogeneous catalysis. Surf. Sci. Rep., 2008, 63(11): 487−513
[9]
R. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chisholm, H. Lam. Combinatorial and high-throughput screening of materials libraries: Review of state of the art. ACS Comb. Sci., 2011, 13(6): 579−633
[10]
J. P. Holdren. Materials Genome Initiative for Global Competitiveness. Washington, DC: National Science and Technology Council, 2011
[11]
D. D. Devore, R. M. Jenkins. Impact of high throughput experimentation on homogeneous catalysis research. Comment. Inorg. Chem., 2014, 34(1−2): 17−41
[12]
J. Lauterbach, E. Sasmaz, J. Bedenbaugh, S. Kim, J. Hattrick-Simpers. Discovery and optimization of coking and sulfur resistant Bi-metallic catalyst for cracking JP-8: From thin film libraries to single powders. In: A. Hagemeyer, A. F. Volpe Jr., eds. Modern Applications of High Throughput R&D in Heterogeneous Catalysis. Sharjah: Bentham Science Publishers, 2014: 89−117
[13]
S. Senkan. Combinatorial heterogeneous catalysis—A new path in an old field. Angew. Chem. Int. Ed. Engl., 2001, 40(2): 312−329
[14]
J. R. Ebner, M. R. Thompson. An active site hypothesis for well-crystallized vanadium phosphorus oxide catalyst systems. Catal. Today, 1993, 16(1): 51−60
[15]
R. Schlögl. Combinatorial chemistry in heterogeneous catalysis: A new scientific approach or “the King’s New Clothes”? Angew. Chem. Int. Edit., 1998, 37(17): 2333−2336
[16]
U. Rodemerck, M. Baerns, M. Holena, D. Wolf. Application of a genetic algorithm and a neural network for the discovery and optimization of new solid catalytic materials. Appl. Surf. Sci., 2004, 223(1−3): 168−174
[17]
J. M. Caruthers, Catalyst design: Knowledge extraction from high-throughput experimentation. J. Catal., 2003, 216(1−2): 98−109
[18]
Y. Yang, T. Lin, X. L. Weng, J. A. Darr, X. Z. Wang. Data flow modeling, data mining and QSAR in high-throughput discovery of functional nanomaterials. Comput. Chem. Eng., 2011, 35(4): 671−678
[19]
A. G. Maldonado, G. Rothenberg. Predictive modeling in catalysis—From dream to reality. Chem. Eng. Prog., 2009, 105(6): 26−32
[20]
G. Rothenberg. Data mining in catalysis: Separating knowledge from garbage. Catal. Today, 2008, 137(1): 2−10
[21]
J. M. Serra, A. Corma, A. Chica, E. Argente, V. Botti. Can artificial neural networks help the experimentation in catalysis? Catal. Today, 2003, 81(3): 393−403
[22]
J. M. Serra, A. Corma, E. Argente, S. Valero, V. Botti. Neural networks for modelling of kinetic reaction data applicable to catalyst scale up and process control and optimisation in the frame of combinatorial catalysis. Appl. Catal. A Gen., 2003, 254(1): 133−145
[23]
H. U. Gremlich. The use of optical spectroscopy in combinatorial chemistry. Biotechnol. Bioeng., 1998/1999, 61(3): 179−187
[24]
S. Schmatloch, M. A. R. Meier, U. S. Schubert. Instrumentation for combinatorial and high-throughput polymer research: A short overview. Macromol. Rapid Comm., 2003, 24(1): 33−46
[25]
Y. Zhang, X. Gong, H. Zhang, R. C. Larock, E. S. Yeung. Combinatorial screening of homogeneous catalysis and reaction optimization based on multiplexed capillary electrophoresis. J. Comb. Chem., 2000, 2(5): 450−452
[26]
N. E. Olong, K. Stöwe, W. F. Maier. A combinatorial approach for the discovery of low temperature soot oxidation catalysts. Appl. Catal. B Environ., 2007, 74(1−2): 19−25
[27]
F. C. Moates, M. Somani, J. Annamalai, J. T. Richardson, D. Luss, R. C. Willson. Infrared thermographic screening of combinatorial libraries of heterogeneous catalysts. Ind. Eng. Chem. Res., 1996, 35(12): 4801−4803
[28]
A. Holzwarth, H. W. Schmidt, W. F. Maier. Detection of catalytic activity in combinatorial libraries of heterogeneous catalysts by IR thermography. Angew. Chem. Int. Edit., 1998, 37(19): 2644−2647
[29]
C. Brooks, High throughput discovery of CO oxidation/VOC combustion and water-gas shift catalysts for industrial multi-component streams. Top. Catal., 2006, 38(1−3): 195−209
[30]
S. J. Taylor, J. P. Morken. Thermographic selection of effective catalysts from an encoded polymer-bound library. Science, 1998, 280(5361): 267−270
[31]
J. Klein, Accelerating lead discovery via advanced screening methodologies. Catal. Today, 2003, 81(3): 329−335
[32]
N. Na, S. Zhang, X. Wang, X. Zhang. Cataluminescence-based array imaging for high-throughput screening of heterogeneous catalysts. Anal. Chem., 2009, 81(6): 2092−2097
[33]
M. Breysse, B. Claudel, L. Faure, M. Guenin, R. J. J. Williams. Chemiluminescence during the catalysis of carbon monoxide oxidation on a thoria surface. J. Catal., 1976, 45(2): 137−144
[34]
H. Su, E. S. Yeung. High-throughput screening of heterogeneous catalysts by laser-induced fluorescence imaging. J. Am. Chem. Soc., 2000, 122(30): 7422−7423
[35]
H. Su, Y. Hou, R. S. Houk, G. L. Schrader, E. S. Yeung. Combinatorial screening of heterogeneous catalysis in selective oxidation of naphthalene by laser-induced fluorescence imaging. Anal. Chem., 2001, 73(18): 4434−4440
[36]
S. M. Senkan. High-throughput screening of solid-state catalyst libraries. Nature, 1998, 394(6691): 350−353
[37]
S. M. Senkan, S. Ozturk. Discovery and optimization of heterogeneous catalysts by using combinatorial chemistry. Angew. Chem. Int. Edit., 1999, 38(6): 791−795
[38]
P. Cong, High-throughput synthesis and screening of combinatorial heterogeneous catalyst libraries. Angew. Chem. Int. Edit., 1999, 38(4): 483−488
[39]
S. Senkan, K. Krantz, S. Ozturk, V. V. Zengin, I. I. Onal. High-throughput testing of heterogeneous catalyst libraries using array microreactors and mass spectrometry. Angew. Chem. Int. Ed. Engl., 1999, 38(18): 2794−2799
[40]
H. Wang, Z. Liu, J. Shen. Quantified MS analysis applied to combinatorial heterogeneous catalyst libraries. J. Comb. Chem., 2003, 5(6): 802−808
[41]
M. Richter, Combinatorial preparation and high-throughput catalytic tests of multi-component deNOx catalysts. Appl. Catal. B Environ., 2002, 36(4): 261−277
[42]
A. Hagemeyer, Application of combinatorial catalysis for the direct amination of benzene to aniline. Appl. Catal. A Gen., 2002, 227(1−2): 43−61
[43]
S. Gomez, J. A. Peters, J. C. van der Waal, T. Maschmeyer. High-throughput experimentation as a tool in catalyst design for the reductive amination of benzaldehyde. Appl. Catal. A Gen., 2003, 254(1): 77−84
[44]
C. Hoffmann, H. W. Schmidt, F. Schüth. A multipurpose parallelized 49-channel reactor for the screening of catalysts: Methane oxidation as the example reaction. J. Catal., 2001, 198(2): 348−354
[45]
M. Lucas, P. Claus. High throughput screening in monolith reactors for total oxidation reactions. Appl. Catal. A Gen., 2003, 254(1): 35−43
[46]
C. Kiener. High-throughput screening under demanding conditions: Cu/ZnO catalysts in high pressure methanol synthesis as an example. J. Catal., 2003, 216(1−2): 110−119
[47]
J. E. Bedenbaugh, S. Kim, E. Sasmaz, J. Lauterbach. High-throughput investigation of catalysts for JP-8 fuel cracking to liquefied petroleum gas. ACS Comb. Sci., 2013, 15(9): 491−497
[48]
O. Trapp. Boosting the throughput of separation techniques by “multiplexing”. Angew. Chem. Int. Ed. Engl., 2007, 46(29): 5609−5613
[49]
O. Trapp. Gas chromatographic high-throughput screening techniques in catalysis. J. Chromatogr. A, 2008, 1184(1−2): 160−190
[50]
R. R. Ernst, W. A. Anderson. Application of Fourier transform spectroscopy to magnetic resonance. Rev. Sci. Instrum., 1966, 37(1): 93−102
[51]
M. B. Comisarow, A. G. Marshall. Fourier transform ion cyclotron resonance spectroscopy. Chem. Phys. Lett., 1974, 25(2): 282−283
[52]
O. Trapp, J. R. Kimmel, O. K. Yoon, I. A. Zuleta, F. M. Fernandez, R. N. Zare. Continuous two-channel time-of-flight mass spectrometric detection of electrosprayed ions. Angew. Chem. Int. Ed. Engl., 2004, 43(47): 6541−6544
[53]
E. N. Lewis, Fourier transform spectroscopic imaging using an infrared focal-plane array detector. Anal. Chem., 1995, 67(19): 3377−3381
[54]
C. M. Snively, G. Oskarsdottir, J. Lauterbach. Chemically sensitive high throughput parallel analysis of solid phase supported library members. J. Comb. Chem., 2000, 2(3): 243−245
[55]
C. M. Snively, G. Oskarsdottir, J. Lauterbach. Parallel analysis of the reaction products from combinatorial catalyst libraries. Angew. Chem. Int. Ed. Engl., 2001, 40(16): 3028−3030
[56]
C. M. Snively, S. Katzenberger, G. Oskarsdottir, J. Lauterbach. Fourier-transform infrared imaging using a rapid-scan spectrometer. Opt. Lett., 1999, 24(24): 1841−1843
[57]
C. M. Snively, G. Oskarsdottir, J. Lauterbach. Chemically sensitive parallel analysis of combinatorial catalyst libraries. Catal. Today, 2001, 67(4): 357−368
[58]
C. M. Snively, J. Lauterbach, M. Christopher. Sampling accessories for HTE of combinatorial libraries using spectral imaging. Spectroscopy, 2002, 17(4), 26−33
[59]
R. J. Hendershot, W. B. Rogers, C. M. Snively, B. Ogunnaike, J. Lauterbach. Development and optimization of NOx storage and reduction catalysts using statistically guided high-throughput experimentation. Catal. Today, 2004, 98(3): 375−385
[60]
R. J. Hendershot, R. Vijay, C. M. Snively, J. Lauterbach. High-throughput study of the performance of storage and reduction catalysts as a function of cycling conditions and catalyst composition. Chem. Eng. Sci., 2006, 61(12): 3907−3916
[61]
R. Vijay, Noble metal free NOx storage catalysts using cobalt discovered via high-throughput experimentation. Catal. Commun., 2005, 6(2): 167−171
[62]
B. J. Feist. High throughput experimentation and microkinetic modeling (Master’s thesis). Newark, DE: University of Delaware, 2006
[63]
D. W. Fickel, E. D’Addio, J. A. Lauterbach, R. F. Lobo. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Appl. Catal. B Environ., 2011, 102(3−4): 441−448
[64]
J. C. Dellamorte, J. Lauterbach, M. A. Barteau. Effect of preparation conditions on Ag catalysts for ethylene epoxidation. Top. Catal., 2010, 53(1−2): 13−18
[65]
J. C. Dellamorte, J. Lauterbach, M. A. Barteau. Palladium-silver bimetallic catalysts with improved activity and selectivity for ethylene epoxidation. Appl. Catal. A Gen., 2011, 391(1−2): 281−288
[66]
E. D’Addio. High throughput Investigation of supported catalysts for COx-free hydrogen production from ammonia decomposition (Doctoral dissertation). Newark, DE: University of Delaware, 2011
[67]
S. Salim. Development of high-throughput catalyst screening for ammonia based selective catalytic reduction of nitric oxide with parallel analysis using Fourier transform infrared imaging (Master’s thesis). Columbia, SC: University of South Carolina, 2013
[68]
P. Kubanek, O. Busch, S. Thomson, H. W. Schmidt, F. Schüth. Imaging reflection IR spectroscopy as a tool to achieve higher integration for high-throughput experimentation in catalysis research. J. Comb. Chem., 2004, 6(3): 420−425
[69]
K. L. A. Chan, S. G. Kazarian. FTIR spectroscopic imaging of dissolution of a solid dispersion of nifedipine in poly(ethylene glycol). Mol. Pharm., 2004, 1(4): 331−335
[70]
K. L. A. Chan, S. G. Kazarian. New opportunities in micro- and macro-attenuated total reflection infrared spectroscopic imaging: Spatial resolution and sampling versatility. Appl. Spectrosc., 2003, 57(4): 381−389
[71]
K. L. A. Chan, S. G. Kazarian, A. Mavraki, D. R. Williams. Fourier transform infrared imaging of human hair with a high spatial resolution without the use of a synchrotron. Appl. Spectrosc., 2005, 59(2): 149−155
[72]
K. L. A. Chan, S. G. Kazarian. High-throughput study of poly(ethylene glycol)/ibuprofen formulations under controlled environment using FTIR imaging. J. Comb. Chem., 2006, 8(1): 26−31
[73]
R. J. Hendershot, A novel reactor system for high throughput catalyst testing under realistic conditions. Appl. Catal. A Gen., 2003, 254(1): 107−120
[74]
S. S. Lasko. Quantitative high-throughput studies of catalyst libraries (Master’s thesis). West Lafayette, IN: Purdue University, 2002
[75]
Anon. GRAMS/AITM with PLSplus/IQ add-on. Waltham, MA: Thermo Fischer Scientific Inc., 2009
[76]
N. Wu, L. Fu, M. Su, M. Aslam, K. C. Wong, V. P. Dravid. Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Lett., 2004, 4(2): 383−386
[77]
C. Wen, X. Zhang, S. E. Lofland, J. Lauterbach, J. Hattrick-Simpers. Synthesis of mono-disperse CoFe alloy nanoparticles with high activity toward NaBH4 hydrolysis. Int. J. Hydrogen Energy, 2013, 38(15): 6436−6441
[78]
D. C. Montgomery. Design and Analysis of Experiments. 3rd ed. Somerset, NJ: John Wiley & Sons, Inc., 1991
[79]
L. V. Azaroff, M. J. Buerger. The Powder Method in X-Ray Crystallography. New York: McGraw-Hill, 1958
[80]
N. F. M. Henry, H. Lipson, W. A. Wooster. The Interpretation of X-Ray Diffraction Photographs. London: MacMillon, 1961
[81]
Anon. Minitab 17 statistical software. State College, PA: Minitab, Inc., 2010

Acknowledgement

The authors acknowledge the South Carolina SmartState Center for Strategic Approaches to the Generation of Electricity (SAGE) for funding.
Compliance with ethics guidelines
Erdem Sasmaz, Kathleen Mingle, and Jochen Lauterbach declare that they have no conflict of interest or financial conflicts to disclose.
Funding
 
AI Summary AI Mindmap
PDF(1065 KB)

Accesses

Citations

Detail

Sections
Recommended

/