
Design and 3D Printing of Scaffolds and Tissues
Jia An, Joanne Ee Mei Teoh, Ratima Suntornnond, Chee Kai Chua
Engineering ›› 2015, Vol. 1 ›› Issue (2) : 261-268.
Design and 3D Printing of Scaffolds and Tissues
A growing number of three-dimensional (3D)-print-ing processes have been applied to tissue engineering. This paper presents a state-of-the-art study of 3D-printing technologies for tissue-engineering applications, with particular focus on the development of a computer-aided scaffold design system; the direct 3D printing of functionally graded scaffolds; the modeling of selective laser sintering (SLS) and fused deposition modeling (FDM) processes; the indirect additive manufacturing of scaffolds, with both micro and macro features; the development of a bioreactor; and 3D/4D bioprinting. Technological limitations will be discussed so as to highlight the possibility of future improvements for new 3D-printing methodologies for tissue engineering.
rapid prototyping / 3D printing / additive manufacturing / tissue engineering / bioprinting
[1] |
R. Langer, J. P. Vacanti. Tissue engineering. Science, 1993, 260(5110): 920−926
|
[2] |
Q. L. Loh, C. Choong. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng. Part B Rev., 2013, 19(6): 485−502
|
[3] |
S. Yang, K. F. Leong, Z. Du, C. K. Chua. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng., 2001, 7(6): 679−689
|
[4] |
S. Yang, K. F. Leong, Z. Du, C. K. Chua. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng., 2002, 8(1): 1−11
|
[5] |
K. F. Leong, C. M. Cheah, C. K. Chua. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials, 2003, 24(13): 2363−2378
|
[6] |
W. Y. Yeong, C. K. Chua, K. F. Leong, M. Chandrasekaran. Rapid prototyping in tissue engineering: Challenges and potential. Trends Biotechnol., 2004, 22(12): 643−652
|
[7] |
T. Boland,
|
[8] |
P. J. Bártolo, C. K. Chua, H. A. Almeida, S. M. Chou, A. S. C. Lim. Biomanufacturing for tissue engineering: Present and future trends. Virtual and Physical Prototyping, 2009, 4(4): 203−216
|
[9] |
S. J. Hollister. Porous scaffold design for tissue engineering. Nat. Mater., 2005, 4(7): 518−524
|
[10] |
C. M. Cheah, C. K. Chua, K. F. Leong, S. W. Chua. Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: Investigation and classification. Int. J. Adv. Manuf. Technol., 2003, 21(4): 291−301
|
[11] |
C. M. Cheah, C. K. Chua, K. F. Leong, S. W. Chua. Development of a tissue engineering scaffold structure library for rapid prototyping. Part 2: Parametric library and assembly program. Int. J. Adv. Manuf. Technol., 2003, 21(4): 302−312
|
[12] |
C. M. Cheah, C. K. Chua, K. F. Leong, C. H. Cheong, M. W. Naing. Automatic algorithm for generating complex polyhedral scaffold structures for tissue engineering. Tissue Eng., 2004, 10(3−4): 595−610
|
[13] |
M. W. Naing, C. K. Chua, K. F. Leong, Y. Wang. Fabrication of customised scaffolds using computer-aided design and rapid prototyping techniques. Rapid Prototyping J., 2005, 11(4): 249−259
|
[14] |
K. F. Leong, C. K. Chua, N. Sudarmadji, W. Y. Yeong. Engineering functionally graded tissue engineering scaffolds. J. Mech. Behav. Biomed. Mater., 2008, 1(2): 140−152
|
[15] |
N. Sudarmadji, C. K. Chua, K. F. Leong. The development of computer-aided system for tissue scaffolds (CASTS) system for functionally graded tissue-engineering scaffolds. Methods Mol. Biol., 2012, 868: 111−123
|
[16] |
C. K. Chua, N. Sudarmadji, K. F. Leong, S. M. Chou, S. C. Lim, W. M. Firdaus. Process flow for designing functionally graded tissue engineering scaffolds. In: Innovative Developments in Design and Manufacturing—Advanced Research in Virtual and Rapid Prototyping, 2010: 45−49
|
[17] |
C. K. Chua, K. F. Leong, N. Sudarmadji, M. J. J. Liu, S. M. Chou. Selective laser sintering of functionally graded tissue scaffolds. MRS Bull., 2011, 36(12): 1006−1014
|
[18] |
S. Cai, J. Xi, C. K. Chua. A novel bone scaffold design approach based on shape function and all-hexahedral mesh refinement. Methods in Molecular Biology, 2012, 868: 45−55
|
[19] |
N. Yang, Z. Quan, D. Zhang, Y. Tian. Multi-morphology transition hybridization CAD design of minimal surface porous structures for use in tissue engineering. Comput. Aided Design, 2014, 56: 11−21
|
[20] |
J. Rouwkema, N. C. Rivron, C. A. van Blitterswijk. Vascularization in tissue engineering. Trends Biotechnol., 2008, 26(8): 434−441
|
[21] |
D. Druecke,
|
[22] |
V. Karageorgiou, D. Kaplan. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005, 26(27): 5474−5491
|
[23] |
M. O. Wang,
|
[24] |
R. Suntornnond, J. An, W. Y. Yeong, C. K. Chua. Hybrid membrane based structure: A novel approach for tissue engineering scaffold. In: The 4th International Conference on Additive Manufacturing and Bio-manufacturing (ICAM-BM 2014). Beijing, China, 2014: 41−42
|
[25] |
C. K. Chua, K. F. Leong. 3D Printing and Additive Manufacturing: Principles and Applications. Singapore: World Scientific Publishing Company Pte Limited, 2014
|
[26] |
C. W. Yung, L. Q. Wu, J. A. Tullman, G. F. Payne, W. E. Bentley, T. A. Barbari. Transglutaminase crosslinked gelatin as a tissue engineering scaffold. J. Biomed. Mater. Res. A, 2007, 83A(4): 1039−1046
|
[27] |
Y. Yan,
|
[28] |
F. P. Melchels, J. Feijen, D. W. Grijpma. A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials, 2009, 30(23−24): 3801−3809
|
[29] |
J. Y. Tan, C. K. Chua, K. F. Leong. Indirect fabrication of gelatin scaffolds using rapid prototyping technology. Virtual and Physical Prototyping, 2010, 5(1): 45−53
|
[30] |
M. J. J. Liu, S. M. Chou, C. K. Chua, B. C. M. Tay, B. K. Ng. The development of silk fibroin scaffolds using an indirect rapid prototyping approach: Morphological analysis and cell growth monitoring by spectral-domain optical coherence tomography. Med. Eng. Phys., 2013, 35(2): 253−262
|
[31] |
D. Dean,
|
[32] |
C. Wu,
|
[33] |
D. W. Hutmacher, T. Schantz, I. Zein, K. W. Ng, S. H. Teoh, K. C. Tan. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J. Biomed. Mater. Res., 2001, 55(2): 203−216
|
[34] |
G. Yu, Y. Ding, D. Li, Y. Tang. A low cost cutter-based paper lamination rapid prototyping system. Int. J. Mach. Tools Manuf., 2003, 43(11): 1079−1086
|
[35] |
D. Ahn, J. H. Kweon, J. Choi, S. Lee. Quantification of surface roughness of parts processed by laminated object manufacturing. J. Mater. Process. Technol., 2012, 212(2): 339−346
|
[36] |
G. S. Kelly, M. S. Jr Just, S. G. Advani, J. W. Gillespie. Energy and bond strength development during ultrasonic consolidation. J. Mater. Process. Technol., 2014, 214(8): 1665−1672
|
[37] |
Z. H. Liu, D. Q. Zhang, S. L. Sing, C. K. Chua, L. E. Loh. Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy. Mater. Charact., 2014, 94: 116−125
|
[38] |
W. Y. Yeong,
|
[39] |
C. Guo, W. Ge, F. Lin. Effects of scanning parameters on material deposition during Electron Beam Selective Melting of Ti-6Al-4V powder. J. Mater. Process. Technol., 2015, 217: 148−157
|
[40] |
T. Durejko, M. Ziętala, W. Polkowski, T. Czujko. Thin wall tubes with Fe3Al/SS316L graded structure obtained by using laser engineered net shaping technology. Mater. Des., 2014, 63: 766−774
|
[41] |
M. Gharbi,
|
[42] |
M. Castilho,
|
[43] |
A. Butscher,
|
[44] |
A. Butscher, M. Bohner, N. Doebelin, S. Hofmann, R. Müller. New depowdering-friendly designs for three-dimensional printing of calcium phosphate bone substitutes. Acta Biomater., 2013, 9(11): 9149−9158
|
[45] |
K. C. Ang, K. F. Leong, C. K. Chua, M. Chandrasekaran. Compressive properties and degradability of poly(ε-caprolatone)/hydroxyapatite composites under accelerated hydrolytic degradation. J. Biomed. Mater. Res. A, 2007, 80A(3): 655−660
|
[46] |
C. M. Cheah, K. F. Leong, C. K. Chua, K. H. Low, H. S. Quek. Characterization of microfeatures in selective laser sintered drug delivery devices. Proc. Inst. Mech. Eng. H, 2002, 216(6): 369−383
|
[47] |
K. F. Leong, C. K. Chua, W. S. Gui, Verani. Building porous biopolymeric microstructures for controlled drug delivery devices using selective laser sintering. Int. J. Adv. Manuf. Technol., 2006, 31(5−6): 483−489
|
[48] |
K. F. Leong, F. E. Wiria, C. K. Chua, S. H. Li. Characterization of a poly-ε-caprolactone polymeric drug delivery device built by selective laser sintering. Biomed Mater Eng., 2007, 17(3): 147−157
|
[49] |
K. H. Tan,
|
[50] |
R. L. Simpson,
|
[51] |
K. H. Tan,
|
[52] |
K. H. Tan, C. K. Chua, K. F. Leong, M. W. Naing, C. M. Cheah. Fabrication and characterization of three-dimensional poly(ether-ether-ketone)/-hydroxyapatite biocomposite scaffolds using laser sintering. Proc. Inst. Mech. Eng. H, 2005, 219(3): 183−194
|
[53] |
C. K. Chua, K. F. Leong, K. H. Tan, F. E. Wiria, C. M. Cheah. Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects. J. Mater. Sci. Mater. Med., 2004, 15(10): 1113−1121
|
[54] |
F. E. Wiria, C. K. Chua, K. F. Leong, Z. Y. Quah, M. Chandrasekaran, M. W. Lee. Improved biocomposite development of poly(vinyl alcohol) and hydroxyapatite for tissue engineering scaffold fabrication using selective laser sintering. J. Mater. Sci. Mater. Med., 2008, 19(3): 989−996
|
[55] |
F. E. Wiria, K. F. Leong, C. K. Chua, Y. Liu. Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater., 2007, 3(1): 1−12
|
[56] |
F. E. Wiria, N. Sudarmadji, K. F. Leong, C. K. Chua, E. W. Chng, C. C. Chan. Selective laser sintering adaptation tools for cost effective fabrication of biomedical prototypes. Rapid Prototyping J., 2010, 16(2): 90−99
|
[57] |
G. Kim, J. Son, S. Park, W. Kim. Hybrid process for fabricating 3D hierarchical scaffolds combining rapid prototyping and electrospinning. Macromol. Rapid Commun., 2008, 29(19): 1577−1581
|
[58] |
S. H. Park, U. H. Koh, M. Kim, D. Y. Yang, K. Y. Suh, J. H. Shin. Hierarchical multilayer assembly of an ordered nanofibrous scaffold via thermal fusion bonding. Biofabrication, 2014, 6(2): 024107
|
[59] |
C. H. Chen, V. B. H. Shyu, J. P. Chen, M. Y. Lee. Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering. Biofabrication, 2014, 6(1): 015004
|
[60] |
C. K. Chua, M. W. Naing, K. F. Leong, C. M. Cheah. Novel method for producing polyhedra scaffolds in tissue engineering. In: Virtual Modeling and Rapid Manufacturing—Advanced Research in Virtual and Rapid Prototyping, 2003: 633−640
|
[61] |
H. S. Ramanath, C. K. Chua, K. F. Leong, K. D. Shah. Melt flow behaviour of poly-ε-caprolactone in fused deposition modelling. J. Mater. Sci. Mater. Med., 2008, 19(7): 2541−2550
|
[62] |
F. E. Wiria, K. F. Leong, C. K. Chua. Modeling of powder particle heat transfer process in selective laser sintering for fabricating tissue engineering scaffolds. Rapid Prototyping J., 2010, 16(6): 400−410
|
[63] |
K. C. Ang, K. F. Leong, C. K. Chua, M. Chandrasekaran. Investigation of the mechanical properties and porosity relationships in fused deposition modeling-fabricated porous structures. Rapid Prototyping J., 2006, 12(2): 100−105
|
[64] |
H. S. Ramanath, M. Chandrasekaran, C. K. Chua, K. F. Leong, K. D. Shah. Modeling of extrusion behavior of biopolymer and composites in fused deposition modeling. In: Key Engineering Materials, 2007, 334−335: 1241−1244
|
[65] |
N. Sudarmadji, J. Y. Tan, K. F. Leong, C. K. Chua, Y. T. Loh. Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds. Acta Biomater., 2011, 7(2): 530−537
|
[66] |
C. E. Misch, Z. Qu, M. W. Bidez. Mechanical properties of trabecular bone in the human mandible: Implications for dental implant treatment planning and surgical placement. J. Oral Maxillofac. Surg., 1999, 57(6): 700−706, discussion 706−708
|
[67] |
C. K. Chua, M. J. J. Liu, S. M. Chou. Additive manufacturing-assisted scaffold-based tissue engineering. In: Innovative Developments in Virtual and Physical Prototyping—Proceedings of the 5th International Conference on Advanced Research and Rapid Prototyping, 2012: 13−21
|
[68] |
W. Y. Yeong, C. K. Chua, K. F. Leong, M. Chandrasekaran, M. W. Lee. Indirect fabrication of collagen scaffold based on inkjet printing technique. Rapid Prototyping J., 2006, 12(4): 229−237
|
[69] |
W. Y. Yeong, C. K. Chua, K. F. Leong, M. Chandrasekaran, M. W. Lee. Comparison of drying methods in the fabrication of collagen scaffold via indirect rapid prototyping. J. Biomed. Mater. Res. B Appl. Biomater., 2007, 82B(1): 260−266
|
[70] |
J. Y. Tan, C. K. Chua, K. F. Leong. Indirect fabrication of tissue engineering scaffolds using rapid prototyping and a foaming process. In: Innovative Developments in Design and Manufacturing—Advanced Research in Virtual and Rapid Prototyping, 2010: 51−57
|
[71] |
J. Y. Tan, C. K. Chua, K. F. Leong. Fabrication of channeled scaffolds with ordered array of micro-pores through microsphere leaching and indirect Rapid Prototyping technique. Biomed. Microdevices, 2013, 15(1): 83−96
|
[72] |
C. H. Chen, J. M. J. Liu, C. K. Chua, S. M. Chou, V. B. H. Shyu, J. P. Chen. Cartilage tissue engineering with silk fibroin scaffolds fabricated by indirect additive manufacturing technology. Materials (Basel), 2014, 7(3): 2104−2119
|
[73] |
V. Mironov, V. Kasyanov, R. R. Markwald. Organ printing: From bioprinter to organ biofabrication line. Curr. Opin. Biotechnol., 2011, 22(5): 667−673
|
[74] |
M. Bartnikowski, T. J. Klein, F. P. W. Melchels, M. A. Woodruff. Effects of scaffold architecture on mechanical characteristics and osteoblast response to static and perfusion bioreactor cultures. Biotechnol. Bioeng., 2014, 111(7): 1440−1451
|
[75] |
M. Ghaedi, J. J. Mendez, P. F. Bove, A. Sivarapatna, M. S. B. Raredon, L. E. Niklason. Alveolar epithelial differentiation of human induced pluripotent stem cells in a rotating bioreactor. Biomaterials, 2014, 35(2): 699−710
|
[76] |
T. W. G. M. Spitters,
|
[77] |
L. Dan, C. K. Chua, K. F. Leong. Fibroblast response to interstitial flow: A state-of-the-art review. Biotechnol. Bioeng., 2010, 107(1): 1−10
|
[78] |
D. Liu, C. K. Chua, K. F. Leong. A mathematical model for fluid shear-sensitive 3D tissue construct development. Biomech. Model. Mechanobiol., 2013, 12(1): 19−31
|
[79] |
B. C. M. Tay, C. Y. Fu, B. K. Ng, J. M. J. Liu, S. M. Chou, C. K. Chua. Monitoring cell proliferation in silk fibroin scaffolds using spectroscopic optical coherence tomography. Microw. Opt. Technol. Lett., 2013, 55(11): 2587−2594
|
[80] |
C. K. Chua, W. Y. Yeong. Bioprinting: Principles and Applications. Singapore: World Scientific Publishing Company Pte Limited, 2014
|
[81] |
V. Mironov, T. Boland, T. Trusk, G. Forgacs, R. R. Markwald. Organ printing: Computer-aided jet-based 3D tissue engineering. Trends Biotechnol., 2003, 21(4): 157−161
|
[82] |
V. Mironov, V. Kasyanov, C. Drake, R. R. Markwald. Organ printing: Promises and challenges. Regen. Med., 2008, 3(1): 93−103
|
[83] |
V. Mironov, R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake, R. R. Markwald. Organ printing: Tissue spheroids as building blocks. Biomaterials, 2009, 30(12): 2164−2174
|
[84] |
J. An, C. K. Chua, T. Yu, H. Li, L. P. Tan. Advanced nanobiomaterial strategies for the development of organized tissue engineering constructs. Nanomedicine (Lond), 2013, 8(4): 591−602
|
[85] |
Alec. Russian scientists to unveil 3D bioprinted transplantable organ in March 2015. 2014-<month>11</month>-<day>10</day>. http://www.3ders.org/articles/20141110-russian-scientists-to-unveil-3d-bioprinted-transplantable-organ-in-march-2015.html
|
[86] |
S. V. Murphy, A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol., 2014, 32(8): 773−785
|
[87] |
D. B. Kolesky, R. L. Truby, A. S. Gladman, T. A. Busbee, K. A. Homan, J. A. Lewis. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater., 2014, 26(19): 3124−3130
|
[88] |
N. E. Fedorovich,
|
[89] |
J. M. Lee, W. Y. Yeong. A preliminary model of time-pressure dispensing system for bioprinting based on printing and material parameters. In: Virtual and Physical Prototyping, 2014: 1−6
|
[90] |
C. Cvetkovic,
|
[91] |
S. Tibbits. 4D printing: Multi-material shape change. Architectural Design, 2014, 84(1): 116−121
|
[92] |
Q. Ge, C. K. Dunn, H. J. Qi, M. L. Dunn. Active origami by 4D printing. In: Smart Materials and Structures, 2014, 23: 094007−094022
|
[93] |
E. Pei. 4D printing—Revolution or fad? Assembly Automation, 2014, 34(2): 123−127
|
[94] |
E. M. Teoh, C. K. Chua, Y. Liu, D. Q. Zhang. Four dimensional (4D) printing using polyjet technology. In: The 4th International Conference on Additive Manufacturing and Bio-manufacturing (ICAM-BM 2014). Beijing, China, 2014: 35−36
|
[95] |
R. W. Esmond, G. C. Phero. The additive manufacturing revolution and the corresponding legal landscape. In: Virtual and Physical Prototyping, 2014: 1−4
|
/
〈 |
|
〉 |