
Bioprinting-Based High-Throughput Fabrication of Three-Dimensional MCF-7 Human Breast Cancer Cellular Spheroids
Kai Ling, Guoyou Huang, Juncong Liu, Xiaohui Zhang, Yufei Ma, Tianjian Lu, Feng Xu
Engineering ›› 2015, Vol. 1 ›› Issue (2) : 269-274.
Bioprinting-Based High-Throughput Fabrication of Three-Dimensional MCF-7 Human Breast Cancer Cellular Spheroids
Cellular spheroids serving as three-dimensional (3D) in vitro tissue models have attracted increasing interest for pathological study and drug-screening applications. Various methods, including microwells in particular, have been developed for engineering cellular spheroids. However, these methods usually suffer from either destructive molding operations or cell loss and non-uniform cell distribution among the wells due to two-step molding and cell seeding. We have developed a facile method that utilizes cell-embedded hydrogel arrays as templates for concave well fabrication and in situ MCF-7 cellular spheroid formation on a chip. A custom-built bioprinting system was applied for the fabrication of sacrificial gelatin arrays and sequentially concave wells in a high-throughput, flexible, and controlled manner. The ability to achieve in situ cell seeding for cellular spheroid construction was demonstrated with the advantage of uniform cell seeding and the potential for programmed fabrication of tissue models on chips. The developed method holds great potential for applications in tissue engineering, regenerative medicine, and drug screening.
MCF-7 cellular spheroids / bioprinting / hydrogels / concave wells / tissue on a chip
[1] |
T. M. Achilli, J. Meyer, J. R. Morgan. Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin. Biol. Ther., 2012, 12(10): 1347−1360
|
[2] |
M. Rimann, U. Graf-Hausner. Synthetic 3D multicellular systems for drug development. Curr. Opin. Biotechnol., 2012, 23(5): 803−809
|
[3] |
L. Wang,
|
[4] |
J. Rouwkema, J. de Boer, C. A. van Blitterswijk. Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng., 2006, 12(9): 2685−2693
|
[5] |
E. Fennema, N. Rivron, J. Rouwkema, C. van Blitterswijk, J. de Boer. Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol., 2013, 31(2): 108−115
|
[6] |
K. Takayama,
|
[7] |
P. R. Baraniak, T. C. McDevitt. Scaffold-free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential. Cell Tissue Res., 2012, 347(3): 701−711
|
[8] |
A. P. Napolitano,
|
[9] |
D. M. Dean, J. R. Morgan. Cytoskeletal-mediated tension modulates the directed self-assembly of microtissues. Tissue Eng. Part A, 2008, 14(12): 1989−1997
|
[10] |
J. Liu,
|
[11] |
J. Friedrich, C. Seidel, R. Ebner, L. A. Kunz-Schughart. Spheroid-based drug screen: Considerations and practical approach. Nat. Protoc., 2009, 4(3): 309−324
|
[12] |
H. F. Chan, Y. Zhang, Y. P. Ho, Y. L. Chiu, Y. Jung, K. W. Leong. Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment. Sci. Rep., 2013, 3: 3462
|
[13] |
F. Langenbach,
|
[14] |
M. Inamori, H. Mizumoto, T. Kajiwara. An approach for formation of vascularized liver tissue by endothelial cell-covered hepatocyte spheroid integration. Tissue Eng. Part A, 2009, 15(8): 2029−2037
|
[15] |
S. F. Wong, D. Y. No, Y. Y. Choi, D. S. Kim, B. G. Chung, S. H. Lee. Concave microwell based size-controllable hepatosphere as a three-dimensional liver tissue model. Biomaterials, 2011, 32(32): 8087−8096
|
[16] |
D. Huh, B. D. Matthews, A. Mammoto, M. Montoya-Zavala, H. Y. Hsin, D. E. Ingber. Reconstituting organ-level lung functions on a chip. Science, 2010, 328(5986): 1662−1668
|
[17] |
D. Huh, Y. S. Torisawa, G. A. Hamilton, H. J. Kim, D. E. Ingber. Microengineered physiological biomimicry: Organs-on-chips. Lab Chip, 2012, 12(12): 2156−2164
|
[18] |
G. Wang,
|
[19] |
R. A. Rezende,
|
[20] |
R. J. Thomas,
|
[21] |
Y. C. Tung, A. Y. Hsiao, S. G. Allen, Y. S. Torisawa, M. Ho, S. Takayama. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst, 2011, 136(3): 473−478
|
[22] |
G. R. Souza,
|
[23] |
T. Liu, M. Winter, B. Thierry. Quasi-spherical microwells on superhydrophobic substrates for long term culture of multicellular spheroids and high throughput assays. Biomaterials, 2014, 35(23): 6060−6068
|
[24] |
S. E. Yeon,
|
[25] |
L. Kang, M. J. Hancock, M. D. Brigham, A. Khademhosseini. Cell confinement in patterned nanoliter droplets in a microwell array by wiping. J. Biomed. Mater. Res. A, 2010, 93(2): 547−557
|
[26] |
H. Tekin, M. Anaya, M. D. Brigham, C. Nauman, R. Langer, A. Khademhosseini. Stimuli-responsive microwells for formation and retrieval of cell aggregates. Lab Chip, 2010, 10(18): 2411−2418
|
[27] |
C. Kim, J. H. Bang, Y. E. Kim, S. H. Lee, J. Y. Kang. On-chip anticancer drug test of regular tumor spheroids formed in microwells by a distributive microchannel network. Lab Chip, 2012, 12(20): 4135−4142
|
[28] |
C. Kim,
|
[29] |
H. C. Moeller, M. K. Mian, S. Shrivastava, B. G. Chung, A. Khademhosseini. A microwell array system for stem cell culture. Biomaterials, 2008, 29(6): 752−763
|
[30] |
Y. S. Hwang, B. G. Chung, D. Ortmann, N. Hattori, H. C. Moeller, A. Khademhosseini. Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proc. Natl. Acad. Sci. U.S.A., 2009, 106(40): 16978−16983
|
[31] |
Y. Xia, G. M. Whitesides. Soft lithography. Annu. Rev. Mater. Sci., 1998, 28(1): 153−184
|
[32] |
Y. Y. Choi, B. G. Chung, D. H. Lee, A. Khademhosseini, J. H. Kim, S. H. Lee. Controlled-size embryoid body formation in concave microwell arrays. Biomaterials, 2010, 31(15): 4296−4303
|
[33] |
A. Y. Hsiao,
|
/
〈 |
|
〉 |