Smartphone-Imaged HIV-1 Reverse-Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) on a Chip from Whole Blood

Gregory L. Damhorst, Carlos Duarte-Guevara, Weili Chen, Tanmay Ghonge, Brian T. Cunningham, Rashid Bashir

Engineering ›› 2015, Vol. 1 ›› Issue (3) : 324-335.

PDF(12306 KB)
PDF(12306 KB)
Engineering ›› 2015, Vol. 1 ›› Issue (3) : 324-335. DOI: 10.15302/J-ENG-2015072
Research
Research

Smartphone-Imaged HIV-1 Reverse-Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) on a Chip from Whole Blood

Author information +
History +

Abstract

Viral load measurements are an essential tool for the long-term clinical care of human immunodeficiency virus (HIV)-positive individuals. The gold standards in viral load instrumentation, however, are still too limited by their size, cost, and sophisticated operation for these measurements to be ubiquitous in remote settings with poor healthcare infrastructure, including parts of the world that are disproportionately affected by HIV infection. The challenge of developing a point-of-care platform capable of making viral load more accessible has been frequently approached but no solution has yet emerged that meets the practical requirements of low cost, portability, and ease-of-use. In this paper, we perform reverse-transcription loop-mediated isothermal amplification (RT-LAMP) on minimally processed HIV-spiked whole blood samples with a microfluidic and silicon microchip platform, and perform fluorescence measurements with a consumer smartphone. Our integrated assay shows amplification from as few as three viruses in a ~ 60 nL RT-LAMP droplet, corresponding to a whole blood concentration of 670 viruses per μL of whole blood. The technology contains greater power in a digital RT-LAMP approach that could be scaled up for the determination of viral load from a finger prick of blood in the clinical care of HIV-positive individuals. We demonstrate that all aspects of this viral load approach, from a drop of blood to imaging the RT-LAMP reaction, are compatible with lab-on-a-chip components and mobile instrumentation.

Keywords

human immunodeficiency virus (HIV) / viral load / loop-mediated isothermal amplification / smartphone / point-of-care

Cite this article

Download citation ▾
Gregory L. Damhorst, Carlos Duarte-Guevara, Weili Chen, Tanmay Ghonge, Brian T. Cunningham, Rashid Bashir. Smartphone-Imaged HIV-1 Reverse-Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) on a Chip from Whole Blood. Engineering, 2015, 1(3): 324‒335 https://doi.org/10.15302/J-ENG-2015072

References

[1]
World Health Organization. HIV/AIDS fact sheet. 2014[2015-<month>08</month>-<day>01</day>]. http://www.who.int/mediacentre/factsheets/fs360/en/#
[2]
World Health Organization, UNICEF, UNAIDS. Global Update on HIV Treatment 2013: Results, Impact and Opportunities. Geneva: WHO Press, 2013
[3]
J. A. Aberg, J. E. Gallant, K. G. Ghanem, P. Emmanuel, B. S. Zingman, M. A. Horberg; Infectious Diseases Society of America. Primary care guidelines for the management of persons infected with HIV: 2013 update by the HIV medicine association of the Infectious Diseases Society of America. Clin. Infect. Dis., 2014, 58(1): e1–e34
[4]
Alere. Alere PimaTM CD4. 2012[2015-<month>05</month>-<day>05</day>]. http://alerehiv.com/hiv-monitoring/alere-pima-cd4/
[5]
Daktari Diagnostics. Products. 2013[2015-<month>05</month>-<day>05</day>]. http://www.daktaridx.com/products/
[6]
G. L. Damhorst, N. N. Watkins, R. Bashir. Micro- and nanotechnology for HIV/AIDS diagnostics in resource-limited settings. IEEE Trans. Biomed. Eng., 2013, 60(3): 715–726
[7]
C. F. Rowley. Developments in CD4 and viral load monitoring in resource-limited settings. Clin. Infect. Dis., 2014, 58(3): 407–412
[8]
US Food and Drug Administration. Complete list of donor screening assays for infectious agents and HIV diagnostic assays. 2013
[9]
US Food and Drug Administration. Vaccines, blood & biologics: HIV-1. 2010[2014-<month>03</month>-<day>17</day>]. http://www.fda.gov/BiologicsBloodVaccines/BloodBloodProducts/ApprovedProducts/LicensedProductsBLAs/BloodDonorScreening/InfectiousDisease/ucm126582.htm
[10]
T. Peterson, M. Stuart. HIV Testing Overview. 2011[2014-<month>03</month>-<day>17</day>]. http://emedicine.medscape.com/article/1983649-overview
[11]
X. Zhang, S. B. Lowe, J. J. Gooding. Brief review of monitoring methods for loop-mediated isothermal amplification (LAMP). Biosens. Bioelectron., 2014, 61: 491–499
[12]
T. Notomi, Loop-mediated isothermal amplification of DNA. Nucleic Acids Res., 2000, 28(12): e63
[13]
M. P. de Baar, E. C. Timmermans, M. Bakker, E. de Rooij, B. van Gemen, J. Goudsmit. One-tube real-time isothermal amplification assay to identify and distinguish human immunodeficiency virus type 1 subtypes A, B, and C and circulating recombinant forms AE and AG. J. Clin. Microbiol., 2001, 39(5): 1895–1902
[14]
M. P. de Baar, Single rapid real-time monitored isothermal RNA amplification assay for quantification of human immunodeficiency virus type 1 isolates from groups M, N, and O. J. Clin. Microbiol., 2001, 39(4): 1378–1384
[15]
K. A. Curtis, D. L. Rudolph, S. M. Owen. Rapid detection of HIV-1 by reverse-transcription, loop-mediated isothermal amplification (RT-LAMP). J. Virol. Methods, 2008, 151(2): 264–270
[16]
C. Liu, An isothermal amplification reactor with an integrated isolation membrane for point-of-care detection of infectious diseases. Analyst (Lond.), 2011, 136(10): 2069–2076
[17]
K. A. Curtis, Isothermal amplification using a chemical heating device for point-of-care detection of HIV-1. PLoS ONE, 2012, 7(2): e31432
[18]
K. A. Curtis, P. L. Niedzwiedz, A. S. Youngpairoj, D. L. Rudolph, S. M. Owen. Real-time detection of HIV-2 by reverse transcription-loop-mediated isothermal amplification. J. Clin. Microbiol., 2014, 52(7): 2674–2676
[19]
C. Liu, Membrane-based, sedimentation-assisted plasma separator for point-of-care applications. Anal. Chem., 2013, 85(21): 10463–10470
[20]
F. B. Myers, R. H. Henrikson, J. M. Bone, L. P. Lee. A handheld point-of-care genomic diagnostic system. PLoS ONE, 2013, 8(8): e70266
[21]
B. Sun, F. Shen, S. E. McCalla, J. E. Kreutz, M. A. Karymov, R. F. Ismagilov. Mechanistic evaluation of the pros and cons of digital RT-LAMP for HIV-1 viral load quantification on a microfluidic device and improved efficiency via a two-step digital protocol. Anal. Chem., 2013, 85(3): 1540–1546
[22]
N. N. Watkins, Microfluidic CD4+ and CD8+ T lymphocyte counters for point-of-care HIV diagnostics using whole blood. Sci. Transl. Med., 2013, 5(214): 214ra170
[23]
C. Duarte, E. Salm, B. Dorvel, B. Reddy Jr., R. Bashir. On-chip parallel detection of foodborne pathogens using loop-mediated isothermal amplification. Biomed. Microdevices, 2013, 15(5): 821–830
[24]
P. Khlebovich. IP Webcam. 2015
[25]
G. L. Damhorst, M. Murtagh, W. R. Rodriguez, R. Bashir. Microfluidics and nanotechnology for detection of global infectious diseases. P. IEEE, 2015, 103(2): 150–160
[26]
G. Jenkins, C. D. Mansfield. Microfluidic Diagnostics: Methods and Protocols. New York: Humana Press, 2013
[27]
C. D. Chin, V. Linder, S. K. Sia. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip, 2012, 12(12): 2118–2134
[28]
S. Y. Teh, R. Lin, L. H. Hung, A. P. Lee. Droplet microfluidics. Lab Chip, 2008, 8(2): 198–220
[29]
The World Bank. Mobile phone access reaches three quarters of planet’s population. 2012[2015-<month>05</month>-<day>22</day>]. http://www.worldbank.org/en/news/press-release/2012/07/17/mobile-phone-access-reaches-three-quarters-planets-population
[30]
A. S. F. Lok, B. J. McMahon. Chronic hepatitis B: Update 2009. Hepatology, 2009, 50(3): 661–662
[31]
M. Baker. Digital PCR hits its stride. Nat. Methods, 2012, 9(6): 541–544
[32]
Y. Chander, A novel thermostable polymerase for RNA and DNA loop-mediated isothermal amplification (LAMP). Front. Microbiol., 2014, 5: 395
[33]
C. C. Boehme, Operational feasibility of using loop-mediated isothermal amplification for diagnosis of pulmonary tuberculosis in microscopy centers of developing countries. J. Clin. Microbiol., 2007, 45(6): 1936–1940
[34]
A. C. Hatch, 1-Million droplet array with wide-field fluorescence imaging for digital PCR. Lab Chip, 2011, 11(22): 3838–3845
[35]
R. H. Sedlak, K. R. Jerome. Viral diagnostics in the era of digital polymerase chain reaction. Diagn. Microbiol. Infect. Dis., 2013, 75(1): 1–4
[36]
K. A. Heyries, Megapixel digital PCR. Nat. Methods, 2011, 8(8): 649–651
[37]
C. M. Hindson, Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat. Methods, 2013, 10(10): 1003–1005
[38]
R. A. White III, S. R. Quake, K. Curr. Digital PCR provides absolute quantitation of viral load for an occult RNA virus. J. Virol. Methods, 2012, 179(1): 45–50
[39]
F. Shen, W. Du, J. E. Kreutz, A. Fok, R. F. Ismagilov. Digital PCR on a SlipChip. Lab Chip, 2010, 10(20): 2666–2672
[40]
M. Pai, M. Ghiasi, N. P. Pai. Point-of-care diagnostic testing in global health: What is the point? Microbe, 2015, 10(3): 103–107

Acknowledgements

We would like to thank Dr. Bobby Reddy, Jr. for helpful discussions. We would also like to thank Dr. Bruce K. Brown and the NIH AIDS Reagent Program for their support and helpful discussions, though no program reagents were specifically used for this publication. Our work was supported by funding from the National Institutes of Health (NIH)Exploratory/Developmental Grant (R21) (AI106024). Gregory L. Damhorst is supported by a Ruth L. Kirschstein National Research Service Award for Individual Predoctoral MD/PhD and Other Dual Doctoral Degree Fellows (F30) (AI109825).
Compliance with ethics guidelines
Gregory L. Damhorst, Carlos Duarte-Guevara, Weili Chen, Tanmay Ghonge, Brian T. Cunningham, and Rashid Bashir declare that they have no conflict of interest or financial conflicts to disclose.
Supplementary Information
engineering.org.cn/EN/10.15302/J-ENG-2015072
Materials and Methods
Figures S1 to S6
Eqs. S1 to S4
Refs. [41−44]
Funding
 
AI Summary AI Mindmap
PDF(12306 KB)

Accesses

Citations

Detail

Sections
Recommended

/