Big Data for Precision Medicine

Daniel Richard Leff, Guang-Zhong Yang

Engineering ›› 2015, Vol. 1 ›› Issue (3) : 277-279.

PDF(162 KB)
PDF(162 KB)
Engineering ›› 2015, Vol. 1 ›› Issue (3) : 277-279. DOI: 10.15302/J-ENG-2015075
Views & Comments
Views & Comments

Big Data for Precision Medicine

Author information +
History +

Abstract

This article focuses on the potential impact of big data analysis to improve health, prevent and detect disease at an earlier stage, and personalize interventions. The role that big data analytics may have in interrogating the patient electronic health record toward improved clinical decision support is discussed. We examine developments in pharmacogenetics that have increased our appreciation of the reasons why patients respond differently to chemotherapy. We also assess the expansion of online health communications and the way in which this data may be capitalized on in order to detect public health threats and control or contain epidemics. Finally, we describe how a new generation of wearable and implantable body sensors may improve wellbeing, streamline management of chronic diseases, and improve the quality of surgical implants.

Keywords

big data / biosensors / body-sensing networks / implantable sensors / clinical decision support systems / pharmacogenetics / mHealth

Cite this article

Download citation ▾
Daniel Richard Leff, Guang-Zhong Yang. Big Data for Precision Medicine. Engineering, 2015, 1(3): 277‒279 https://doi.org/10.15302/J-ENG-2015075

References

[1]
J. Andreu-Perez, C. C. Poon, R. D. Merrifield, S. T. Wong, G. Z. Yang. Big data for health. IEEE J. Biomed. Health Inform., 2015, 19(4): 1193–1208
[2]
L. Hood, M. Flores. A personal view on systems medicine and the emergence of proactive P4 medicine: Predictive, preventive, personalized and participatory. New Biotechnol., 2012, 29(6): 613–624
[3]
J. G. Klann, V. Anand, S. M. Downs. Patient-tailored prioritization for a pediatric care decision support system through machine learning. J. Am. Med. Inform. Assoc., 2013, 20(e2): e267–e274
[4]
B. G. Nair, S. F. Newman, G. N. Peterson, W. Y. Wu, H. A. Schwid. Feedback mechanisms including real-time electronic alerts to achieve near 100% timely prophylactic antibiotic administration in surgical cases. Anesth. Analg., 2010, 111(5): 1293–1300
[5]
K. B. Wagholikar,  Clinical decision support with automated text processing for cervical cancer screening. J. Am. Med. Inform. Assoc., 2012, 19(5): 833–839
[6]
J. Futoma, J. Morris, J. Lucas. A comparison of models for predicting early hospital readmissions. J. Biomed. Inform., 2015, 56: 229–238
[7]
K. Mei, J. Peng, L. Gao, N. N. Zheng, J. Fan. Hierarchical classification of large-scale patient records for automatic treatment stratification. IEEE J. Biomed. Health Inform., 2015, 19(4): 1234–1245
[8]
M. P. Goetz,  The impact of cytochrome P450 2D6 metabolism in women receiving adjuvant tamoxifen. Breast Cancer Res. Tr., 2007, 101(1): 113–121
[9]
B. Sen,  Kinase-impaired BRAF mutations in lung cancer confer sensitivity to dasatinib. Sci. Transl. Med., 2012, 4(136): 136ra70
[10]
T. Watanabe, T. Kobunai, T. Akiyoshi, K. Matsuda, S. Ishihara, K. Nozawa. Prediction of response to preoperative chemoradiotherapy in rectal cancer by using reverse transcriptase polymerase chain reaction analysis of four genes. Dis. Colon Rectum, 2014, 57(1): 23–31
[11]
Cancer Genome Atlas Research Network; J. N. Weinstein,  The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet., 2013, 45(10): 1113–1120
[12]
J. Barretina,  The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 2012, 483(7391): 603–607
[13]
M. J. Garnett,  Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature, 2012, 483(7391): 570–575
[14]
J. Sheng, F. Li, S. T. Wong. Optimal drug prediction from personal genomics profiles. IEEE J. Biomed. Health Inform., 2015, 19(4): 1264–1270
[15]
Anon. TuAnalyze is here! 2010-<month>05</month>-<day>19</day>. http://www.tudiabetes.org/forum/topics/tuanalyze-is-here
[16]
S. Ram, W. Zhang, M. Williams, Y. Pengetnze. Predicting asthma-related emergency department visits using big data. IEEE J. Biomed. Health Inform., 2015, 19(4): 1216–1223
[17]
M. Odlum, S. Yoon. What can we learn about the Ebola outbreak from tweets? Am. J. Infect. Control, 2015, 43(6): 563–571
[18]
S. Bahkali, N. Alkharjy, M. Alowairdy, M. Househ, O. Da’ar, K. Alsurimi. A social media campaign to promote breastfeeding among Saudi women: A web-based survey study. Stud. Health Technol. Inform., 2015, 213: 247–250
[19]
G. Z. Yang. Body Sensor Networks. 2nd ed. London: Springer-Verlag, 2014
[20]
F. Rincón, P. R. Grassi, N. Khaled, D. Atienza, D. Sciuto. Automated real-time atrial fibrillation detection on a wearable wireless sensor platform. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, NJ: IEEE Service Center, 2012: 2472–2745
[21]
M. M. Ahmadi, G. A. Jullien. A wireless-implantable microsystem for continuous blood glucose monitoring. IEEE Trans. Biomed. Circuits Syst., 2009, 3(3): 169–180
[22]
J. Padwal, M. M. Georgy, B. A. Georgy. Spinal cord stimulators in an outpatient interventional neuroradiology practice. J. Neurointerv. Surg., 2014, 6(9): 708–711
[23]
M. K. Moore, S. Fulop, M. Tabib-Azar, D. J. Hart. Piezoresistive pressure sensors in the measurement of intervertebral disc hydrostatic pressure. Spine J., 2009, 9(12): 1030–1034
Funding
 
AI Summary AI Mindmap
PDF(162 KB)

Accesses

Citations

Detail

Sections
Recommended

/