
An Ultrasonic Backscatter Instrument for Cancellous Bone Evaluation in Neonates
Chengcheng Liu, Rong Zhang, Ying Li, Feng Xu, Dean Ta, Weiqi Wang
Engineering ›› 2015, Vol. 1 ›› Issue (3) : 336-343.
An Ultrasonic Backscatter Instrument for Cancellous Bone Evaluation in Neonates
Ultrasonic backscatter technique has shown promise as a noninvasive cancellous bone assessment tool. A novel ultrasonic backscatter bone diagnostic (UBBD) instrument and an in vivo application for neonatal bone evaluation are introduced in this study. The UBBD provides several advantages, including noninvasiveness, non-ionizing radiation, portability, and simplicity. In this study, the backscatter signal could be measured within 5 s using the UBBD. Ultrasonic backscatter measurements were performed on 467 neonates (268 males and 199 females) at the left calcaneus. The backscatter signal was measured at a central frequency of 3.5 MHz. The delay (T1) and duration (T2) of the backscatter signal of interest (SOI) were varied, and the apparent integrated backscatter (AIB), frequency slope of apparent backscatter (FSAB), zero frequency intercept of apparent backscatter (FIAB), and spectral centroid shift (SCS) were calculated. The results showed that the SOI selection had a direct influence on cancellous bone evaluation. The AIB and FIAB were positively correlated with the gestational age (|R| up to 0.45, P<0.001) when T1 was short (<8 µs), while negative correlations (|R| up to 0.56, P<0.001) were commonly observed for T1>10 µs. Moderate positive correlations (|R| up to 0.45, P<0.001) were observed for FSAB and SCS with gestational age when T1 was long (>10 µs). The T2 mainly introduced fluctuations in the observed correlation coefficients. The moderate correlations observed with UBBD demonstrate the feasibility of using the backscatter signal to evaluate neonatal bone status. This study also proposes an explicit standard for in vivo SOI selection and neonatal cancellous bone assessment.
ultrasonic backscatter / cancellous bone evaluation / signal of interest (SOI) / backscatter instrument / neonatal bone status
[1] |
K. Engelke,
|
[2] |
R. Lorente-Ramos, J. Azpeitia-Armán, A. Muñoz-Hernández, J. M. García-Gómez, P. Díez-Martínez, M. Grande-Bárez. Dual-energy X-ray absorptiometry in the diagnosis of osteoporosis: A practical guide. AJR Am. J. Roentgenol., 2011, 196(4): 897–904
|
[3] |
P. Andreopoulou, R. S. Bockman. Management of postmenopausal osteoporosis. Annu. Rev. Med., 2015, 66: 329–342
|
[4] |
C. B. Becker. Sclerostin inhibition for osteoporosis—A new approach. N. Engl. J. Med., 2014, 370(5): 476–477
|
[5] |
T. D. Rachner, S. Khosla, L. C. Hofbauer. Osteoporosis: Now and the future. Lancet, 2011, 377(9773): 1276–1287
|
[6] |
P. Laugier. Quantitative ultrasound of bone: Looking ahead. Joint Bone Spine, 2006, 73(2): 125–128
|
[7] |
D. Mulleman, I. Legroux-Gerot, B. Duquesnoy, X. Marchandise, B. Delcambre, B. Cortet. Quantitative ultrasound of bone in male osteoporosis. Osteoporos. Int., 2002, 13(5): 388–393
|
[8] |
P. H. Nicholson, R. Alkalay. Quantitative ultrasound predicts bone mineral density and failure load in human lumbar vertebrae. Clin. Biomech. (Bristol, Avon), 2007, 22(6): 623–629
|
[9] |
F. Padilla, F. Jenson, V. Bousson, F. Peyrin, P. Laugier. Relationships of trabecular bone structure with quantitative ultrasound parameters: In vitro study on human proximal femur using transmission and backscatter measurements. Bone, 2008, 42(6): 1193–1202
|
[10] |
K. A. Wear, S. Nagaraja, M. L. Dreher, S. L. Gibson. Relationships of quantitative ultrasound parameters with cancellous bone microstructure in human calcaneus in vitro. J. Acoust. Soc. Am., 2012, 131(2): 1605–1612
|
[11] |
D. Ta, W. Wang, K. Huang, Y. Wang, L. H. Le. Analysis of frequency dependence of ultrasonic backscatter coefficient in cancellous bone. J. Acoust. Soc. Am., 2008, 124(6): 4083–4090
|
[12] |
C. Chappard, P. Laugier, B. Fournier, C. Roux, G. Berger. Assessment of the relationship between broadband ultrasound attenuation and bone mineral density at the calcaneus using BUA imaging and DXA. Osteoporos. Int., 1997, 7(4): 316–322
|
[13] |
G. Haïat,
|
[14] |
D. Hans,
|
[15] |
S. Mészáros, E. Tóth, V. Ferencz, E. Csupor, E. Hosszú, C. Horváth. Calcaneous quantitative ultrasound measurements predicts vertebral fractures in idiopathic male osteoporosis. Joint Bone Spine, 2007, 74(1): 79–84
|
[16] |
W. Pluskiewicz, B. Drozdzowska. Ultrasonic measurement of the calcaneus in Polish normal and osteoporotic women and men. Bone, 1999, 24(6): 611–617
|
[17] |
P. Laugier. An overview of bone sonometry. Int. Congr. Ser., 2004, 1274: 23–32
|
[18] |
K. A. Wear. Ultrasonic scattering from cancellous bone: A review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2008, 55(7): 1432–1441
|
[19] |
B. K. Hoffmeister, A. P. Holt, S. C. Kaste. Effect of the cortex on ultrasonic backscatter measurements of cancellous bone. Phys. Med. Biol., 2011, 56(19): 6243–6255
|
[20] |
B. K. Hoffmeister,
|
[21] |
K. Il Lee, M. Joo Choi. Frequency-dependent attenuation and backscatter coefficients in bovine trabecular bone from 0.2 to 1.2 MHz. J. Acoust. Soc. Am., 2012, 131(1): EL67–EL73
|
[22] |
C. C. Liu, H. J. Han, D. A. Ta, W. Q. Wang. Effect of selected signals of interest on ultrasonic backscattering measurement in cancellous bones. Sci. China Phys. Mech., 2013, 56(7): 1310–1316
|
[23] |
C. C. Liu, D. Ta, B. Hu, L. H. Le, W. Wang. The analysis and compensation of cortical thickness effect on ultrasonic backscatter signals in cancellous bone. J. Appl. Phys., 2014, 116(12): 124903
|
[24] |
C. C. Liu,
|
[25] |
F. Padilla, F. Peyrin, P. Laugier. Prediction of backscatter coefficient in trabecular bones using a numerical model of three-dimensional microstructure. J. Acoust. Soc. Am., 2003, 113(2): 1122–1129
|
[26] |
K. A. Wear, A. Laib. The dependence of ultrasonic backscatter on trabecular thickness in human calcaneus: Theoretical and experimental results. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2003, 50(8): 979–986
|
[27] |
K. A. Wear, A. P. Stuber, J. C. Reynolds. Relationships of ultrasonic backscatter with ultrasonic attenuation, sound speed and bone mineral density in human calcaneus. Ultrasound Med. Biol., 2000, 26(8): 1311–1316
|
[28] |
B. S. Garra, M. Locher, S. Felker, K. A. Wear. Measurements of ultrasonic backscattered spectral centroid shift from spine in vivo: Methodology and preliminary results. Ultrasound Med. Biol., 2009, 35(1): 165–168
|
[29] |
K. Huang, D. Ta, W. Wang, L. H. Le. Simplified inverse filter tracking algorithm for estimating the mean trabecular bone spacing. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2008, 55(7): 1453–1464
|
[30] |
W. C. Pereira, S. L. Bridal, A. Coron, P. Laugier. Singular spectrum analysis applied to backscattered ultrasound signals from in vitro human cancellous bone specimens. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2004, 51(3): 302–312
|
[31] |
Y. Q. Jiang,
|
[32] |
R. Zhang, D. Ta, C. Liu, C. Chen. Feasibility of bone assessment with ultrasonic backscatter signals in neonates. Ultrasound Med. Biol., 2013, 39(10): 1751–1759
|
[33] |
J. Litniewski, L. Cieslik, M. Lewandowski, R. Tymkiewicz, B. Zienkiewicz, A. Nowicki. Ultrasonic scanner for in vivo measurement of cancellous bone properties from backscattered data. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2012, 59(7): 1470–1477
|
[34] |
J. P. Karjalainen,
|
[35] |
C. Liu,
|
[36] |
M. S. Fewtrell, T. J. Cole, N. J. Bishop, A. Lucas. Neonatal factors predicting childhood height in preterm infants: Evidence for a persisting effect of early metabolic bone disease? J. Pediatr., 2000, 137(5): 668–673
|
[37] |
M. C. Backström, A. L. Kuusela, R. Mäki. Metabolic bone disease of prematurity. Ann. Med., 1996, 28(4): 275–282
|
[38] |
A. Lucas, O. G. Brooke, B. A. Baker, N. Bishop, R. Morley. High alkaline phosphatase activity and growth in preterm neonates. Arch. Dis. Child., 1989, 64(7 Spec No): 902–909
|
[39] |
J. E. Teitelbaum,
|
[40] |
M. Catache, C. R. Leone. Role of plasma and urinary calcium and phosphorus measurements in early detection of phosphorus deficiency in very low birthweight infants. Acta Paediatr., 2003, 92(1): 76–80
|
[41] |
J. Faerk, B. Peitersen, S. Petersen, K. F. Michaelsen. Bone mineralisation in premature infants cannot be predicted from serum alkaline phosphatase or serum phosphate. Arch. Dis. Child. Fetal Neonatal Ed., 2002, 87(2): F133–F136
|
[42] |
W. W. K. Koo, J. Walters, A. J. Bush, R. W. Chesney, S. E. Carlson. Dual-energy X-ray absorptiometry studies of bone mineral status in newborn infants. J. Bone Miner. Res., 1996, 11(7): 997–1002
|
[43] |
H. McDevitt, S. F. Ahmed. Quantitative ultrasound assessment of bone health in the neonate. Neonatology, 2007, 91(1): 2–11
|
[44] |
L. Pereda, T. Ashmeade, J. Zaritt, J. D. Carver. The use of quantitative ultrasound in assessing bone status in newborn preterm infants. J. Perinatol., 2003, 23(8): 655–659
|
[45] |
A. Omar, S. Turan, A. Bereket. Reference data for bone speed of sound measurement by quantitative ultrasound in healthy children. Arch. Osteoporos., 2006, 1(1−2): 37–41
|
[46] |
P. A. Narayana, J. Ophir. A closed form method for the measurement of attenuation in nonlinearly dispersive media. Ultrason. Imaging, 1983, 5(1): 17–21
|
[47] |
B. Rack,
|
/
〈 |
|
〉 |