
Optical Molecular Imaging Frontiers in Oncology: The Pursuit of Accuracy and Sensitivity
Kun Wang, Chongwei Chi, Zhenhua Hu, Muhan Liu, Hui Hui, Wenting Shang, Dong Peng, Shuang Zhang, Jinzuo Ye, Haixiao Liu, Jie Tian
Engineering ›› 2015, Vol. 1 ›› Issue (3) : 309-323.
Optical Molecular Imaging Frontiers in Oncology: The Pursuit of Accuracy and Sensitivity
Cutting-edge technologies in optical molecular imaging have ushered in new frontiers in cancer research, clinical translation, and medical practice, as evidenced by recent advances in optical multimodality imaging, Cerenkov luminescence imaging (CLI), and optical image-guided surgeries. New abilities allow in vivo cancer imaging with sensitivity and accuracy that are unprecedented in conventional imaging approaches. The visualization of cellular and molecular behaviors and events within tumors in living subjects is improving our deeper understanding of tumors at a systems level. These advances are being rapidly used to acquire tumor-to-tumor molecular heterogeneity, both dynamically and quantitatively, as well as to achieve more effective therapeutic interventions with the assistance of real-time imaging. In the era of molecular imaging, optical technologies hold great promise to facilitate the development of highly sensitive cancer diagnoses as well as personalized patient treatment—one of the ultimate goals of precision medicine.
optical molecular imaging / multimodality molecular imaging / optical multimodality tomography / Cerenkov luminescence imaging / intraoperative image-guided surgery
[1] |
J. R. Conway, N. O. Carragher, P. Timpson. Developments in preclinical cancer imaging: Innovating the discovery of therapeutics. Nat. Rev. Cancer, 2014, 14(5): 314–328
|
[2] |
T. Maldiney,
|
[3] |
S. I. Ellenbroek, J. van Rheenen. Imaging hallmarks of cancer in living mice. Nat. Rev. Cancer, 2014, 14(6): 406–418
|
[4] |
R. Weissleder, M. J. Pittet. Imaging in the era of molecular oncology. Nature, 2008, 452(7187): 580–589
|
[5] |
Z. Hu,
|
[6] |
J. S. Reynolds,
|
[7] |
U. Mahmood, C. H. Tung, A. Bogdanov Jr., R. Weissleder. Near-infrared optical imaging of protease activity for tumor detection. Radiology, 1999, 213(3): 866–870
|
[8] |
M. Yang,
|
[9] |
V. Ntziachristos, J. Ripoll, L. V. Wang, R. Weissleder. Looking and listening to light: The evolution of whole-body photonic imaging. Nat. Biotechnol., 2005, 23(3): 313–320
|
[10] |
C. Qin,
|
[11] |
V. Ntziachristos. Going deeper than microscopy: The optical imaging frontier in biology. Nat. Methods, 2010, 7(8): 603–614
|
[12] |
F. Leuschner, M. Nahrendorf. Molecular imaging of coronary atherosclerosis and myocardial infarction: Considerations for the bench and perspectives for the clinic. Circ. Res., 2011, 108(5): 593–606
|
[13] |
S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy. A finite element approach for modeling photon transport in tissue. Med. Phys., 1993, 20(2): 299–309
|
[14] |
H. L. Graber, R. L. Barbour. High-resolution near-infrared (NIR) imaging of dense scattering media by diffusion tomography. Faseb J., 1993, 7: A720
|
[15] |
J. C. Schotland, J. S. Leigh. Photon diffusion imaging. Faseb J., 1992, 6: A446–A446
|
[16] |
A. Yodh, B. Chance. Spectroscopy and imaging with diffusing light. Phys. Today, 1995, 48(3): 34–40
|
[17] |
M. S. Patterson, B. Chance, B. C. Wilson. Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties. Appl. Opt., 1989, 28(12): 2331–2336
|
[18] |
B. Chance. Optical method. Annu. Rev. Biophys. Biophys. Chem., 1991, 20: 1–28
|
[19] |
F. F. Jöbsis. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 1977, 198(4323): 1264–1267
|
[20] |
A. M. Smith, M. C. Mancini, S. Nie. Bioimaging: Second window for in vivo imaging. Nat. Nanotechnol., 2009, 4(11): 710–711
|
[21] |
R. Weissleder. A clearer vision for in vivo imaging. Nat. Biotechnol., 2001, 19(4): 316–317
|
[22] |
D. Zhu, C. Li. Nonconvex regularizations in fluorescence molecular tomography for sparsity enhancement. Phys. Med. Biol., 2014, 59(12): 2901–2912
|
[23] |
D. Han,
|
[24] |
K. Liu,
|
[25] |
Y. Lv,
|
[26] |
J. Zhong, J. Tian, X. Yang, C. Qin. Whole-body Cerenkov luminescence tomography with the finite element SP(3) method. Ann. Biomed. Eng., 2011, 39(6): 1728–1735
|
[27] |
X. Ding, K. Wang, B. Jie, Y. Luo, Z. Hu, J. Tian. Probability method for Cerenkov luminescence tomography based on conformance error minimization. Biomed. Opt. Express, 2014, 5(7): 2091–2112
|
[28] |
A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, V. Ntziachristos. FMT-XCT: In vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography. Nat. Methods, 2012, 9(6): 615–620
|
[29] |
P. Mohajerani,
|
[30] |
S. C. Davis,
|
[31] |
M. J. Eppstein, D. J. Hawrysz, A. Godavarty, E. M. Sevick-Muraca. Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography. Proc. Natl. Acad. Sci. U.S.A., 2002, 99(15): 9619–9624
|
[32] |
X. Gu, Q. Zhang, L. Larcom, H. Jiang. Three-dimensional bioluminescence tomography with model-based reconstruction. Opt. Express, 2004, 12(17): 3996–4000
|
[33] |
C. Li, G. S. Mitchell, S. R. Cherry. Cerenkov luminescence tomography for small-animal imaging. Opt. Lett., 2010, 35(7): 1109–1111
|
[34] |
K. Liu,
|
[35] |
H. Liu,
|
[36] |
D. Zhu, C. Li. Nonuniform update for sparse target recovery in fluorescence molecular tomography accelerated by ordered subsets. Biomed. Opt. Express, 2014, 5(12): 4249–4259
|
[37] |
D. Wang, X. Song, J. Bai. Adaptive-mesh-based algorithm for fluorescence molecular tomography using an analytical solution. Opt. Express, 2007, 15(15): 9722–9730
|
[38] |
N. Cao, A. Nehorai, M. Jacobs. Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm. Opt. Express, 2007, 15(21): 13695–13708
|
[39] |
J. Dutta, S. Ahn, C. Li, S. R. Cherry, R. M. Leahy. Joint L1 and total variation regularization for fluorescence molecular tomography. Phys. Med. Biol., 2012, 57(6): 1459–1476
|
[40] |
D. Han,
|
[41] |
J. Shi, F. Liu, G. Zhang, J. Luo, J. Bai. Enhanced spatial resolution in fluorescence molecular tomography using restarted L1-regularized nonlinear conjugate gradient algorithm. J. Biomed. Opt., 2014, 19(4): 046018
|
[42] |
P. Wu,
|
[43] |
P. Wu, Y. Hu, K. Wang, J. Tian. Bioluminescence tomography by an iterative reweighted (l)2 norm optimization. IEEE Trans. Biomed. Eng., 2014, 61(1): 189–196
|
[44] |
S. C. Davis,
|
[45] |
X. Ma,
|
[46] |
Y. Liu, S. J. Redmond, N. Wang, F. Blumenkron, M. R. Narayanan, N. H. Lovell. Spectral analysis of accelerometry signals from a directed-routine for falls-risk estimation. IEEE Trans. Biomed. Eng., 2011, 58(8): 2308–2315
|
[47] |
X. Liu, B. Zhang, J. Luo, J. Bai. 4-D reconstruction for dynamic fluorescence diffuse optical tomography. IEEE Trans. Med. Imaging, 2012, 31(11): 2120–2132
|
[48] |
F. Leuschner,
|
[49] |
Y. Lin, D. Thayer, O. Nalcioglu, G. Gulsen. Tumor characterization in small animals using magnetic resonance-guided dynamic contrast enhanced diffuse optical tomography. J. Biomed. Opt., 2011, 16(10): 106015
|
[50] |
K. M. Tichauer,
|
[51] |
Q. Zhang, Y. Du, Z. Xue, C. Chi, X. Jia, J. Tian. Comprehensive evaluation of the anti-angiogenic and anti-neoplastic effects of Endostar on liver cancer through optical molecular imaging. PLoS ONE, 2014, 9(1): e85559
|
[52] |
C. H. Contag, M. H. Bachmann. Advances in in vivo bioluminescence imaging of gene expression. Annu. Rev. Biomed. Eng., 2002, 4: 235–260
|
[53] |
M. Keyaerts, V. Caveliers, T. Lahoutte. Bioluminescence imaging: Looking beyond the light. Trends Mol. Med., 2012, 18(3): 164–172
|
[54] |
K. Hochgräfe, E. M. Mandelkow. Making the brain glow: In vivo bioluminescence imaging to study neurodegeneration. Mol. Neurobiol., 2013, 47(3): 868–882
|
[55] |
M. F. Kircher,
|
[56] |
A. G. Bell. On the production and reproduction of sound by light. Am. J. Sci., 1880, s3-20(118): 305–324
|
[57] |
S. Zackrisson, S. M. van de Ven, S. S. Gambhir. Light in and sound out: Emerging translational strategies for photoacoustic imaging. Cancer Res., 2014, 74(4): 979–1004
|
[58] |
L. V. Wang, L. Gao. Photoacoustic microscopy and computed tomography: From bench to bedside. Annu. Rev. Biomed. Eng., 2014, 16: 155–185
|
[59] |
L. V. Wang, S. Hu. Photoacoustic tomography: In vivo imaging from organelles to organs. Science, 2012, 335(6075): 1458–1462
|
[60] |
A. Taruttis, V. Ntziachristos. Advances in real-time multispectral optoacoustic imaging and its applications. Nat. Photonics, 2015, 9(4): 219–227
|
[61] |
G. Hong,
|
[62] |
G. Hong,
|
[63] |
G. Hong,
|
[64] |
R. K. O’Reilly, C. J. Hawker, K. L. Wooley. Cross-linked block copolymer micelles: Functional nanostructures of great potential and versatility. Chem. Soc. Rev., 2006, 35(11): 1068–1083
|
[65] |
L. M. Ensign,
|
[66] |
J. Ezzati Nazhad Dolatabadi, H. Valizadeh, H. Hamishehkar. Solid lipid nanoparticles as efficient drug and gene delivery systems: Recent breakthroughs. Adv. Pharm. Bull., 2015, 5(2): 151–159
|
[67] |
X. Q. Zhang, X. Xu, R. Lam, D. Giljohann, D. Ho, C. A. Mirkin. Strategy for increasing drug solubility and efficacy through covalent attachment to polyvalent DNA-nanoparticle conjugates. ACS Nano, 2011, 5(9): 6962–6970
|
[68] |
K. M. Gharpure, S. Y. Wu, C. Li, G. Lopez-Berestein, A. K. Sood. Nanotechnology: Future of oncotherapy. Clin. Cancer Res., 2015, 21(14): 3121–3130
|
[69] |
D. Geißler, L. J. Charbonnière, R. F. Ziessel, N. G. Butlin, H. G. Löhmannsröben, N. Hildebrandt. Quantum dot biosensors for ultrasensitive multiplexed diagnostics. Angew. Chem. Int. Ed. Engl., 2010, 49(8): 1396–1401
|
[70] |
H. Meng,
|
[71] |
H. Meng,
|
[72] |
R. Qiao,
|
[73] |
K. Ajima,
|
[74] |
V. N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi. The properties and applications of nanodiamonds. Nat. Nanotechnol., 2012, 7(1): 11–23
|
[75] |
D. L. J. Thorek, A. Ogirala, B. J. Beattie, J. Grimm. Quantitative imaging of disease signatures through radioactive decay signal conversion. Nat. Med., 2013, 19(10): 1345–1350
|
[76] |
H. Liu,
|
[77] |
A. Ruggiero, J. P. Holland, J. S. Lewis, J. Grimm. Cerenkov luminescence imaging of medical isotopes. J. Nucl. Med., 2010, 51(7): 1123–1130
|
[78] |
A. E. Spinelli,
|
[79] |
D. L. J. Thorek, C. C. Riedl, J. Grimm. Clinical Cerenkov luminescence imaging of 18F-FDG. J. Nucl. Med., 2014, 55(1): 95–98
|
[80] |
Z. Hu,
|
[81] |
R. S. Dothager, R. J. Goiffon, E. Jackson, S. Harpstrite, D. Piwnica-Worms. Cerenkov radiation energy transfer (CRET) imaging: A novel method for optical imaging of PET isotopes in biological systems. PLoS ONE, 2010, 5(10): e13300
|
[82] |
H. Liu, X. Zhang, B. Xing, P. Han, S. S. Gambhir, Z. Cheng. Radiation-luminescence-excited quantum dots for in vivo multiplexed optical imaging. Small, 2010, 6(10): 1087–1091
|
[83] |
Y. Bernhard, B. Collin, R. A. Decréau. Inter/intramolecular Cherenkov radiation energy transfer (CRET) from a fluorophore with a built-in radionuclide. Chem. Commun. (Camb.), 2014, 50(51): 6711–6713
|
[84] |
H. Hu,
|
[85] |
X. Sun,
|
[86] |
W. Guo,
|
[87] |
X. Cao,
|
[88] |
I. Veronese,
|
[89] |
Y. Wang,
|
[90] |
C. M. Carpenter, C. Sun, G. Pratx, H. Liu, Z. Cheng, L. Xing. Radioluminescent nanophosphors enable multiplexed small-animal imaging. Opt. Express, 2012, 20(11): 11598–11604
|
[91] |
C. Sun,
|
[92] |
O. Volotskova,
|
[93] |
J. Li, L. W. Dobrucki, M. Marjanovic, E. J. Chaney, K. S. Suslick, S. A. Boppart. Enhancement and wavelength-shifted emission of Cerenkov luminescence using multifunctional microspheres. Phys. Med. Biol., 2015, 60(2): 727–739
|
[94] |
X. Ma,
|
[95] |
R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, M. D. Silva. Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys. Med. Biol., 2009, 54(16): N355–N365
|
[96] |
S. R. Kothapalli, H. Liu, J. C. Liao, Z. Cheng, S. S. Gambhir. Endoscopic imaging of Cerenkov luminescence. Biomed. Opt. Express, 2012, 3(6): 1215–1225
|
[97] |
H. Liu,
|
[98] |
J. P. Holland, G. Normand, A. Ruggiero, J. S. Lewis, J. Grimm. Intraoperative imaging of positron emission tomographic radiotracers using Cerenkov luminescence emissions. Mol. Imaging, 2011, 10(3): 177–186
|
[99] |
D. L. J. Thorek,
|
[100] |
C. Li, G. S. Mitchell, S. R. Cherry. Cerenkov luminescence tomography for small-animal imaging. Opt. Lett., 2010, 35(7): 1109–1111
|
[101] |
Z. Hu,
|
[102] |
A. E. Spinelli,
|
[103] |
J. Zhong, J. Tian, X. Yang, C. Qin. Whole-body Cerenkov luminescence tomography with the finite element SP3 method. Ann. Biomed. Eng., 2011, 39(6): 1728–1735
|
[104] |
J. Zhong, C. Qin, X. Yang, Z. Chen, X. Yang, J. Tian. Fast-specific tomography imaging via Cerenkov emission. Mol. Imaging Biol., 2012, 14(3): 286–292
|
[105] |
B. J. Hillman, J. C. Goldsmith. The uncritical use of high-tech medical imaging. N. Engl. J. Med., 2010, 363(1): 4–6
|
[106] |
G. M. van Dam,
|
[107] |
M. B. Sturm,
|
[108] |
S. L. Troyan,
|
[109] |
B. Chance. Near-infrared images using continuous, phase-modulated, and pulsed light with quantitation of blood and blood oxygenation. Ann. N.Y. Acad. Sci., 1998, 838: 29–45
|
[110] |
B. T. Phillips,
|
[111] |
C. Hirche,
|
[112] |
K. Yamauchi, H. Nagafuji, T. Nakamura, T. Sato, N. Kohno. Feasibility of ICG fluorescence-guided sentinel node biopsy in animal models using the HyperEye Medical System. Ann. Surg. Oncol., 2011, 18(7): 2042–2047
|
[113] |
G. Themelis, J. S. Yoo, K. S. Soh, R. Schulz, V. Ntziachristos. Real-time intraoperative fluorescence imaging system using light-absorption correction. J. Biomed. Opt., 2009, 14(6): 064012
|
[114] |
H. G. van der Poel, T. Buckle, O. R. Brouwer, R. A. Valdés Olmos, F. W. van Leeuwen. Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: Clinical proof of concept of an integrated functional imaging approach using a multimodal tracer. Eur. Urol., 2011, 60(4): 826–833
|
[115] |
S. L. Troyan,
|
[116] |
S. Yamashita,
|
[117] |
G. Spinoglio,
|
[118] |
M. S. Borofsky,
|
[119] |
T. Moroga,
|
[120] |
K. Gotoh,
|
[121] |
J. S. D. Mieog,
|
[122] |
R. A. Cahill, M. Anderson, L. M. Wang, I. Lindsey, C. Cunningham, N. J. Mortensen. Near-infrared (NIR) laparoscopy for intraoperative lymphatic road-mapping and sentinel node identification during definitive surgical resection of early-stage colorectal neoplasia. Surg. Endosc., 2012, 26(1): 197–204
|
[123] |
Y. Liu,
|
[124] |
M. A. Whitney,
|
[125] |
M. H. Park,
|
[126] |
C. Chi,
|
[127] |
M. Hutteman,
|
[128] |
J. S. Mieog,
|
[129] |
J. R. van der Vorst,
|
[130] |
J. R. van der Vorst,
|
[131] |
L. M. A. Crane,
|
[132] |
M. Kijanka,
|
[133] |
R. G. Pleijhuis,
|
[134] |
L. M. A. Crane,
|
[135] |
C. Chi,
|
[136] |
N. C. Munabi, O. B. Olorunnipa, D. Goltsman, C. H. Rohde, J. A. Ascherman. The ability of intra-operative perfusion mapping with laser-assisted indocyanine green angiography to predict mastectomy flap necrosis in breast reconstruction: A prospective trial. J. Plast. Reconstr. Aesthet. Surg., 2014, 67(4): 449–455
|
[137] |
T. Sugie,
|
[138] |
J. Mohebali, L. J. Gottlieb, J. P. Agarwal. Further validation for use of the retrograde limb of the internal mammary vein in deep inferior epigastric perforator flap breast reconstruction using laser-assisted indocyanine green angiography. J. Reconstr. Microsurg., 2010, 26(2): 131–135
|
[139] |
A. Peloso,
|
[140] |
D. Gray, E. Kim, V. Cotero, P. Staudinger, S. Yazdanfar, C. T. Hehir. Compact fluorescence and white light imaging system for intraoperative visualization of nerves. In: Proceedings of SPIE—The International Society for Optical Engineering. Bellingham, WA: SPIE, The International Society for Optical Engineering, 2012: 8207
|
[141] |
S. Keereweer,
|
[142] |
M. A. Whitney,
|
[143] |
M. H. Park,
|
[144] |
M. D. Jafari,
|
[145] |
J. Glatz, J. Varga, P. B. Garcia-Allende, M. Koch, F. R. Greten, V. Ntziachristos. Concurrent video-rate color and near-infrared fluorescence laparoscopy. J. Biomed. Opt., 2013, 18(10): 101302
|
[146] |
V. Venugopal,
|
[147] |
T. Hide, S. Yano, J. Kuratsu. Indocyanine green fluorescence endoscopy at endonasal transsphenoidal surgery for an intracavernous sinus dermoid cyst: Case report. Neurol. Med. Chir. (Tokyo), 2014, 54(12): 999–1003
|
[148] |
M. Plante,
|
[149] |
Y. Pan,
|
[150] |
K. Si, R. Fiolka, M. Cui. Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation. Nat. Photonics, 2012, 6(10): 657–661
|
/
〈 |
|
〉 |