
Recent Advances in 19Fluorine Magnetic Resonance Imaging with Perfluorocarbon Emulsions
Anne H. Schmieder, Shelton D. Caruthers, Jochen Keupp, Samuel A. Wickline, Gregory M. Lanza
Engineering ›› 2015, Vol. 1 ›› Issue (4) : 475-489.
Recent Advances in 19Fluorine Magnetic Resonance Imaging with Perfluorocarbon Emulsions
The research roots of 19fluorine (19F) magnetic resonance imaging (MRI) date back over 35 years. Over that time span, 1H imaging flourished and was adopted worldwide with an endless array of applications and imaging approaches, making magnetic resonance an indispensable pillar of biomedical diagnostic imaging. For many years during this timeframe, 19F imaging research continued at a slow pace as the various attributes of the technique were explored. However, over the last decade and particularly the last several years, the pace and clinical relevance of 19F imaging has exploded. In part, this is due to advances in MRI instrumentation, 19F/1H coil designs, and ultrafast pulse sequence development for both preclinical and clinical scanners. These achievements, coupled with interest in the molecular imaging of anatomy and physiology, and combined with a cadre of innovative agents, have brought the concept of 19F into early clinical evaluation. In this review, we attempt to provide a slice of this rich history of research and development, with a particular focus on liquid perfluorocarbon compound-based agents.
fluorine / magnetic resonance imaging (MRI) / dual-tuned coil / perfluorocarbon / angiogenesis / cell labeling
[1] |
G. N. Holland, P. A. Bottomley, W. S. Hinshaw. 19F magnetic resonance imaging. J. Magn. Reson., 1977, 28(1): 133–136
|
[2] |
M. Shimizu,
|
[3] |
L. J. Busse, R. G. Pratt, S. R. Thomas. Deconvolution of chemical shift spectra in two- or three-dimensional [19F] MR imaging. J. Comput. Assist. Tomogr., 1988, 12(5): 824–835
|
[4] |
P. A. Bottomley. Human in vivo NMR spectroscopy in diagnostic medicine: Clinical tool or research probe? Radiology, 1989, 170(1): 1–15
|
[5] |
R. P. Mason, P. P. Antich, E. E. Babcock, J. L. Gerberich, R. L. Nunnally. Perfluorocarbon imaging in vivo: A 19F MRI study in tumor-bearing mice. Magn. Reson. Imaging, 1989, 7(5): 475–485
|
[6] |
H. K. Lee, O. Nalcioglu, R. B. Buxton. Correction of chemical-shift artifacts in 19F imaging of PFOB: A robust signed magnitude method. Magn. Reson. Med., 1992, 23(2): 254–263
|
[7] |
K. L. Meyer, M. J. Carvlin, B. Mukherji, H. A. Sloviter, P. M. Joseph. Fluorinated blood substitute retention in the rat measured by fluorine-19 magnetic resonance imaging. Invest. Radiol., 1992, 27(8): 620–627
|
[8] |
P. Bachert. Pharmacokinetics using fluorine NMR in vivo. Prog. Nucl. Mag. Res. Sp., 1998, 33(1): 1–56
|
[9] |
D. G. Reid, P. S. Murphy. Fluorine magnetic resonance in vivo: A powerful tool in the study of drug distribution and metabolism. Drug Discov. Today, 2008, 13(11−12): 473–480
|
[10] |
W. Wolf, C. A. Presant, V. Waluch. 19F-MRS studies of fluorinated drugs in humans. Adv. Drug Deliv. Rev., 2000, 41(1): 55–74
|
[11] |
M. M. Kaneda, S. Caruthers, G. M. Lanza, S. A. Wickline. Perfluorocarbon nanoemulsions for quantitative molecular imaging and targeted therapeutics. Ann. Biomed. Eng., 2009, 37(10): 1922–1933
|
[12] |
R. J. Kaufman. Clinical development of perfluorocarbon-based emulsions as red cell substitutes. In: J. Sjöblom, ed. Emulsions and Emulsion Stability. New York: Marcel Dekker, Inc., 1996: 343–368
|
[13] |
M. P. Krafft. Fluorocarbons and fluorinated amphiphiles in drug delivery and biomedical research. Adv. Drug Deliv. Rev., 2001, 47(2−3): 209–228
|
[14] |
D. M. Eckmann, M. A. Swartz, M. R. Glucksberg, N. Gavriely, J. B. Grotberg. Perfluorocarbon induced alterations in pulmonary mechanics. Artif. Cells Blood Substit. Immobil. Biotechnol., 1998, 26(3): 259–271
|
[15] |
D. M. Eckmann, M. A. Swartz, N. Gavriely, M. R. Glucksberg, J. B. Grotberg. Influence of intravenous perfluorocarbon administration on the dynamic behavior of lung surfactant. Artif. Cells Blood Substit. Immobil. Biotechnol., 1998, 26(4): 359–366
|
[16] |
H. F. Zhou, H. W. Chan, S. A. Wickline, G. M. Lanza, C. T. Pham. ανβ3-targeted nanotherapy suppresses inflammatory arthritis in mice. FASEB J., 2009, 23(9): 2978–2985
|
[17] |
J. C. Hampton. An electron microscope study of the hepatic uptake and excretion of submicroscopic particles injected into the blood stream and into the bile duct. Acta Anat. (Basel), 1958, 32(3): 262–291
|
[18] |
J. W. M. Bulte, A. H. Schmieder, J. Keupp, S. D. Caruthers, S. A. Wickline, G. M. Lanza. MR cholangiography demonstrates unsuspected rapid biliary clearance of nanoparticles in rodents: Implications for clinical translation. Nanomedicine (Lond.), 2014, 10(7): 1385–1388
|
[19] |
L. Juhlin. Excretion of intravenously injected solid particles in bile. Acta Physiol. Scand., 1960, 49(2−3): 224–230
|
[20] |
J. H. Modell, E. J. Newby, B. C. Ruiz. Long-term survival of dogs after breathing oxygenated fluorocarbon liquid. Fed. Proc., 1970, 29(5): 1731–1736
|
[21] |
S. E. Curtis, J. T. Peek, D. R. Kelly. Partial liquid breathing with perflubron improves arterial oxygenation in acute canine lung injury. J. Appl. Physiol., 1993, 75(6): 2696–2702
|
[22] |
S. E. Curtis, S. J. Tilden, W. E. Bradley, S. M. Cain. Effect of continuous rotation on the efficacy of partial liquid (perflubron) breathing in canine acute lung injury. Adv. Exp. Med. Biol., 1994, 361: 449–456
|
[23] |
E. M. Bendel-Stenzel, J. D. Mrozek, D. R. Bing, P. A. Meyers, J. E. Connett, M. C. Mammel. Dynamics of spontaneous breathing during patient-triggered partial liquid ventilation. Pediatr. Pulmonol., 1998, 26(5): 319–325
|
[24] |
A. R. Franz, C. Mack, J. Reichart, F. Pohlandt, H. D. Hummler. Preserved spontaneous breathing improves cardiac output during partial liquid ventilation. Am. J. Respir. Crit. Care Med., 2001, 164(1): 36–42
|
[25] |
U. H. Thome, A. Schulze, R. Schnabel, A. R. Franz, F. Pohlandt, H. D. Hummler. Partial liquid ventilation in severely surfactant-depleted, spontaneously breathing rabbits supported by proportional assist ventilation. Crit. Care Med., 2001, 29(6): 1175–1180
|
[26] |
R. P. Geyer. “Bloodless” rats through the use of artificial blood substitutes. Fed. Proc., 1975, 34(6): 1499–1505
|
[27] |
J. G. Riess, M. Le Blanc. Perfluoro compounds as blood substitutes. Angew. Chem. Int. Ed. Engl., 1978, 17(9): 621–634
|
[28] |
T. Mitsuno, H. Ohyanagi, R. Naito. Clinical studies of a perfluorochemical whole blood substitute (Fluosol-DA): Summary of 186 cases. Ann. Surg., 1982, 195(1): 60–69
|
[29] |
T. M. Chang, M. Farmer, R. P. Geyer, G. Moss. Blood substitutes based on modified hemoglobin and fluorochemicals. ASAIO Trans., 1987, 33(4): 819–823
|
[30] |
F. Hong, K. A. Shastri, G. L. Logue, M. B. Spaulding. Complement activation by artificial blood substitute Fluosol: In vitro and in vivo studies. Transfusion, 1991, 31(7): 642–647
|
[31] |
S. F. Flaim. Pharmacokinetics and side effects of perfluorocarbon-based blood substitutes. Artif. Cells Blood Substit. Immobil. Biotechnol., 1994, 22(4): 1043–1054
|
[32] |
K. C. Lowe. Perfluorinated blood substitutes and artificial oxygen carriers. Blood Rev., 1999, 13(3): 171–184
|
[33] |
C. Jacoby,
|
[34] |
C. Jacoby,
|
[35] |
R. F. Mattrey, F. W. Scheible, B. B. Gosink, G. R. Leopold, D. M. Long, C. B. Higgins. Perfluoroctylbromide: A liver/spleen-specific and tumor-imaging ultrasound contrast material. Radiology, 1982, 145(3): 759–762
|
[36] |
R. F. Mattrey, D. M. Long, F. Multer, R. Mitten, C. B. Higgins. Perfluoroctylbromide: A reticuloendothelial-specific and tumor-imaging agent for computed tomography. Radiology, 1982, 145(3): 755–758
|
[37] |
R. F. Mattrey, M. P. Andre. Ultrasonic enhancement of myocardial infarction with perfluorocarbon compounds in dogs. Am. J. Cardiol., 1984, 54(1): 206–210
|
[38] |
W. W. Peck, R. F. Mattrey, R. A. Slutsky, C. B. Higgins. Perfluoroctylbromide: Acute hemodynamic effects, in pigs, of intravenous administration compared with the standard ionic contrast media. Invest. Radiol., 1984, 19(2): 129–132
|
[39] |
R. F. Mattrey,
|
[40] |
D. C. Long, D. M. Long, J. Riess, R. Follana, A. Burgan, R. F. Mattrey. Preparation and application of highly concentrated perfluoroctylbromide fluorocarbon emulsions. Biomater. Artif. Cells Artif. Organs, 1988, 16(1−3): 441–442
|
[41] |
R. F. Mattrey. Perfluorooctylbromide: A new contrast agent for CT, sonography, and MR imaging. AJR Am. J. Roentgenol., 1989, 152(2): 247–252
|
[42] |
R. F. Mattrey, A. A. Nemcek Jr., R. Shelton, M. P. André, R. M. Mitten, T. Peterson. In vivo estimation of perfluorooctylbromide concentration in tissues. Invest. Radiol., 1990, 25(8): 915–921
|
[43] |
R. F. Mattrey, M. A. Trambert, J. J. Brown, J. N. Bruneton, S. W. Young, G. L. Schooley. Results of the phase III trials with Imagent GI as an oral magnetic resonance contrast agent. Invest. Radiol., 1991, 26(Suppl 1): S65–S66, discussion S71
|
[44] |
R. F. Mattrey, D. J. Schumacher, H. T. Tran, Q. Guo, R. B. Buxton. The use of Imagent® BP in diagnostic imaging research and 19F magnetic resonance for PO2 measurements. Biomater. Artif. Cells Immobilization Biotechnol., 1992, 20(2−4): 917–920
|
[45] |
G. M. Lanza,
|
[46] |
G. M. Lanza,
|
[47] |
G. M. Lanza,
|
[48] |
G. M. Lanza,
|
[49] |
S. A. Anderson,
|
[50] |
S. Flacke,
|
[51] |
G. M. Lanza,
|
[52] |
P. M. Winter,
|
[53] |
P. M. Winter,
|
[54] |
A. M. Morawski,
|
[55] |
A. M. Morawski,
|
[56] |
A. H. Schmieder,
|
[57] |
P. M. Winter,
|
[58] |
T. Cyrus,
|
[59] |
P. M. Winter,
|
[60] |
G. Hu,
|
[61] |
J. N. Marsh,
|
[62] |
A. M. Neubauer,
|
[63] |
K. C. Partlow,
|
[64] |
T. Cyrus,
|
[65] |
M. Lijowski,
|
[66] |
K. C. Partlow, G. M. Lanza, S. A. Wickline. Exploiting lipid raft transport with membrane targeted nanoparticles: A strategy for cytosolic drug delivery. Biomaterials, 2008, 29(23): 3367–3375
|
[67] |
J. Ruiz-Cabello,
|
[68] |
A. H. Schmieder,
|
[69] |
N. R. Soman, G. M. Lanza, J. M. Heuser, P. H. Schlesinger, S. A. Wickline. Synthesis and characterization of stable fluorocarbon nanostructures as drug delivery vehicles for cytolytic peptides. Nano Lett., 2008, 8(4): 1131–1136
|
[70] |
E. A. Waters, J. Chen, J. S. Allen, H. Zhang, G. M. Lanza, S. A. Wickline. Detection and quantification of angiogenesis in experimental valve disease with integrin-targeted nanoparticles and 19-fluorine MRI/MRS. J. Cardiovasc. Magn. Reson., 2008, 10: 43
|
[71] |
P. M. Winter, S. D. Caruthers, H. Zhang, T. A. Williams, S. A. Wickline, G. M. Lanza. Antiangiogenic synergism of integrin-targeted fumagillin nanoparticles and atorvastatin in atherosclerosis. JACC Cardiovasc. Imaging, 2008, 1(5): 624–634
|
[72] |
P. M. Winter,
|
[73] |
J. Keupp, S. D. Caruthers, J. Rahmer, T. A. Williams, S. A. Wickline, G. M. Lanza. Fluorine-19 MR molecular imaging of angiogenesis on Vx-2 tumors in rabbits using ανβ3--targeted nanoparticles. In: Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM) 17th Annual Scientific Meeting and Exhibition. Honolulu, HI, USA, 2009: 223
|
[74] |
N. R. Soman,
|
[75] |
R. Southworth,
|
[76] |
K. Cai,
|
[77] |
A. Kassner,
|
[78] |
G. M. Lanza,
|
[79] |
J. N. Marsh,
|
[80] |
D. G. Thomas,
|
[81] |
C. T. Pham,
|
[82] |
K. Wang,
|
[83] |
D. A. Kedziorek,
|
[84] |
R. D. Engberink,
|
[85] |
M. Stuber,
|
[86] |
J. W. Bulte, D. L. Kraitchman. Monitoring cell therapy using iron oxide MR contrast agents. Curr. Pharm. Biotechnol., 2004, 5(6): 567–584
|
[87] |
J. A. Frank,
|
[88] |
J. W. Bulte, J. A. Frank. Imaging macrophage activity in the brain by using ultrasmall particles of iron oxide. AJNR Am. J. Neuroradiol., 2000, 21(9): 1767–1768
|
[89] |
J. W. Bulte, R. A. Brooks, B. M. Moskowitz, L. H. Bryant Jr., J. A. Frank. T1 and T2 relaxometry of monocrystalline iron oxide nanoparticles (MION-46L): Theory and experiment. Acad. Radiol., 1998, 5(Suppl 1): S137–S140, discussion S145−S146
|
[90] |
J. W. Bulte, P. G. Laughlin, E. K. Jordan, V. A. Tran, J. Vymazal, J. A. Frank. Tagging of T cells with superparamagnetic iron oxide: Uptake kinetics and relaxometry. Acad. Radiol., 1996, 3(Suppl 2): S301–S303
|
[91] |
E. T. Ahrens, R. Flores, H. Xu, P. A. Morel. In vivo imaging platform for tracking immunotherapeutic cells. Nat. Biotechnol., 2005, 23(8): 983–987
|
[92] |
M. Srinivas, P. A. Morel, L. A. Ernst, D. H. Laidlaw, E. T. Ahrens. Fluorine-19 MRI for visualization and quantification of cell migration in a diabetes model. Magn. Reson. Med., 2007, 58(4): 725–734
|
[93] |
J. M. Janjic, E. T. Ahrens. Fluorine-containing nanoemulsions for MRI cell tracking. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2009, 1(5): 492–501
|
[94] |
B. M. Helfer,
|
[95] |
F. Bonetto,
|
[96] |
T. K. Hitchens, Q. Ye, D. F. Eytan, J. M. Janjic, E. T. Ahrens, C. Ho. 19F MRI detection of acute allograft rejection with in vivo perfluorocarbon labeling of immune cells. Magn. Reson. Med., 2011, 65(4): 1144–1153
|
[97] |
A. Balducci, B. M. Helfer, E. T. Ahrens, C. F. O’Hanlon 3rd, A. K. Wesa. Visualizing arthritic inflammation and therapeutic response by fluorine-19 magnetic resonance imaging (19F MRI). J. Inflamm. (Lond.), 2012, 9(1): 24
|
[98] |
E. T. Ahrens, B. M. Helfer, C. F. O’Hanlon, C. Schirda. Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI. Magn. Reson. Med., 2014, 72(6): 1696–1701
|
[99] |
E. T. Ahrens, J. W. Bulte. Tracking immune cells in vivo using magnetic resonance imaging. Nat. Rev. Immunol., 2013, 13(10): 755–763
|
[100] |
J. Zhong, P. H. Mills, T. K. Hitchens, E. T. Ahrens. Accelerated fluorine-19 MRI cell tracking using compressed sensing. Magn. Reson. Med., 2013, 69(6): 1683–1690
|
[101] |
T. K. Hitchens, L. Liu, L. M. Foley, V. Simplaceanu, E. T. Ahrens, C. Ho. Combining perfluorocarbon and superparamagnetic iron-oxide cell labeling for improved and expanded applications of cellular MRI. Magn. Reson. Med., 2015, 73(1): 367–375
|
[102] |
J. M. Janjic, M. Srinivas, D. K. K. Kadayakkara, E. T. Ahrens. Self-delivering nanoemulsions for dual fluorine-19 MRI and fluorescence detection. J. Am. Chem. Soc., 2008, 130(9): 2832–2841
|
[103] |
H. P. Schlemmer,
|
[104] |
R. Martino, V. Gilard, F. Desmoulin, M. Malet-Martino. Fluorine-19 or phosphorus-31 NMR spectroscopy: A suitable analytical technique for quantitative in vitro metabolic studies of fluorinated or phosphorylated drugs. J. Pharm. Biomed. Anal., 2005, 38(5): 871–891
|
[105] |
A. M. Neubauer,
|
[106] |
P. Harvey, I. Kuprov, D. Parker. Lanthanide complexes as paramagnetic probes for 19F magnetic resonance. Eur. J. Inorg. Chem., 2012, 2012(12): 2015–2022
|
[107] |
A. de Vries,
|
[108] |
M. Meissner, M. Reisert, T. Hugger, J. Hennig, D. von Elverfeldt, J. Leupold. Revealing signal from noisy 19F MR images by chemical shift artifact correction. Magn. Reson. Med., 2015, 73(6): 2225–2233
|
[109] |
F. Schmid, C. Höltke, D. Parker, C. Faber. Boosting 19F MRI-SNR efficient detection of paramagnetic contrast agents using ultrafast sequences. Magn. Reson. Med., 2013, 69(4): 1056–1062
|
[110] |
M. J. Goette, G. M. Lanza, S. D. Caruthers, S. A. Wickline. Improved quantitative 19F MR molecular imaging with flip angle calibration and B1-mapping compensation. J. Magn. Reson. Imaging, 2015, 42(2): 488–494
|
[111] |
M. J. Goette, J. Keupp, J. Rahmer, G. M. Lanza, S. A. Wickline, S. D. Caruthers. Balanced UTE-SSFP for 19F MR imaging of complex spectra. Magn. Reson. Med., 2015, 74(2): 537–543
|
[112] |
J. Rahmer,
|
[113] |
J. Rahmer,
|
[114] |
J. Keupp,
|
[115] |
Y. Otake, Y. Soutome, K. Hirata, H. Ochi, Y. Bito. Double-tuned radiofrequency coil for 19F and 1H imaging. Magn. Reson. Med. Sci., 2014, 13(3): 199–205
|
[116] |
Y. Ji,
|
[117] |
L. Hu,
|
[118] |
F. D. Hockett,
|
[119] |
L. T. Muftuler, G. Gulsen, K. D. Sezen, O. Nalcioglu. Automatic tuned MRI RF coil for multinuclear imaging of small animals at 3 T. J. Magn. Reson., 2002, 155(1): 39–44
|
[120] |
P. Mazurkewitz, C. Leussler, J. Keupp, T. Schaeffter. A double-resonant 19F/1H transmit/receive solenoid coil for MRI. In: Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM) 14th Scientific Meeting and Exhibition. Seattle, WA, USA, 2006: 2596
|
[121] |
D. Ballon, M. C. Graham, S. Miodownik, J. A. Koutcher. A 64 MHz half-birdcage resonator for clinical imaging. J. Magn. Reson., 1990, 90(1): 131–140
|
[122] |
J. Jin, R. L. Magin, G. Shen, T. Perkins. A simple method to incorporate the effects of an RF shield into RF resonator analysis for MRI applications. IEEE Trans. Biomed. Eng., 1995, 42(8): 840–843
|
[123] |
M. J. Goette, G. M. Lanza, S. A. Wickline, S. D. Caruthers. Quantitative molecular imaging of fluorinated agents: 19F flip angle calibration using 1H power settings. In: Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM) 20th Annual Scientific Meeting and Exhibition. Melbourne, Victoria, Australia, 2012: 1655
|
[124] |
A. Mastropietro,
|
[125] |
S. B. Reeder, D. A. Herzka, E. R. McVeigh. Signal-to-noise ratio behavior of steady-state free precession. Magn. Reson. Med., 2004, 52(1): 123–130
|
[126] |
J. Yu,
|
[127] |
J. Keupp, P. C. Mazurkewitz, I. Gräßlin, T. Schaeffter. Simultaneous 19F and 1H imaging on a clinical 3 T MR scanner. In: Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM) 14th Scientific Meeting and Exhibition. Seattle, WA, USA, 2006: 102
|
[128] |
J. Keupp, S. A. Wickline, G. M. Lanza, S. D. Caruthers. Hadamard-type pulse-phase encoding for imaging of multi-resonant fluorine-19 nanoparticles in targeted molecular MRI. In: Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM) 18th Annual Scientific Meeting and Exhibition. Stockholm, Sweden, 2010: 982
|
[129] |
R. Lamerichs,
|
[130] |
J. Rahmer, P. Börnert, J. Groen, C. Bos. Three-dimensional radial ultrashort echo-time imaging with T2 adapted sampling. Magn. Reson. Med., 2006, 55(5): 1075–1082
|
[131] |
K. Scheffler, S. Lehnhardt. Principles and applications of balanced SSFP techniques. Eur. Radiol., 2003, 13(11): 2409–2418
|
[132] |
E. J. Ribot, J. M. Gaudet, Y. Chen, K. M. Gilbert, P. J. Foster. In vivo MR detection of fluorine-labeled human MSC using the bSSFP sequence. Int. J. Nanomedicine, 2014, 9(1): 1731–1739
|
[133] |
H. E. Longmaid 3rd,
|
[134] |
R. F. Mattrey,
|
[135] |
D. J. Sartoris,
|
[136] |
A. V. Ratner,
|
[137] |
A. V. Ratner, H. H. Muller, B. Bradley-Simpson, D. Hirst, W. Pitts, S. W. Young. Detection of acute radiation damage to the spleen in mice by using fluorine-19 MR imaging. AJR Am. J. Roentgenol., 1988, 151(3): 477–480
|
[138] |
B. P. Barnett,
|
[139] |
U. Flögel,
|
[140] |
B. Ebner,
|
[141] |
K. Vasudeva,
|
[142] |
X. Yu,
|
[143] |
J. Myerson, L. He, G. Lanza, D. Tollefsen, S. Wickline. Thrombin-inhibiting perfluorocarbon nanoparticles provide a novel strategy for the treatment and magnetic resonance imaging of acute thrombosis. J. Thromb. Haemost., 2011, 9(7): 1292–1300
|
[144] |
A. A. Gilad,
|
[145] |
P. M. Winter,
|
[146] |
E. Vinogradov, A. D. Sherry, R. E. Lenkinski. CEST: From basic principles to applications, challenges and opportunities. J. Magn. Reson., 2013, 229: 155–172
|
[147] |
E. Vinogradov, T. C. Soesbe, J. A. Balschi, A. D. Sherry, R. E. Lenkinski. pCEST: Positive contrast using Chemical Exchange Saturation Transfer. J. Magn. Reson., 2012, 215: 64–73
|
[148] |
S. J. Ratnakar, S. Viswanathan, Z. Kovacs, A. K. Jindal, K. N. Green, A. D. Sherry. Europium(III) DOTA-tetraamide complexes as redox-active MRI sensors. J. Am. Chem. Soc., 2012, 134(13): 5798–5800
|
[149] |
C. Khemtong,
|
[150] |
D. Coman, G. E. Kiefer, D. L. Rothman, A. D. Sherry, F. Hyder. A lanthanide complex with dual biosensing properties: CEST (chemical exchange saturation transfer) and BIRDS (biosensor imaging of redundant deviation in shifts) with europium DOTA-tetraglycinate. NMR Biomed., 2011, 24(10): 1216–1225
|
[151] |
S. Viswanathan, S. J. Ratnakar, K. N. Green, Z. Kovacs, L. M. De León-Rodríguez, A. D. Sherry. Multi-frequency PARACEST agents based on europium(III)-DOTA-tetraamide ligands. Angew. Chem. Int. Ed. Engl., 2009, 48(49): 9330–9333
|
[152] |
C. Khemtong,
|
[153] |
J. M. Zhao,
|
[154] |
A. Pasha, G. Tircsó, E. T. Benyó, E. Brücher, A. D. Sherry. Synthesis and characterization of DOTA-(amide)4 derivatives: Equilibrium and kinetic behavior of their lanthanide(III) complexes. Eur. J. Inorg. Chem., 2007, 2007(27): 4340–4349
|
[155] |
E. Vinogradov, S. Zhang, A. Lubag, J. A. Balschi, A. D. Sherry, R. E. Lenkinski. On-resonance low B1 pulses for imaging of the effects of PARACEST agents. J. Magn. Reson., 2005, 176(1): 54–63
|
[156] |
L. Di Bari, G. Pescitelli, A. D. Sherry, M. Woods. Structural and chiroptical properties of the two coordination isomers of YbDOTA-type complexes. Inorg. Chem., 2005, 44(23): 8391–8398
|
[157] |
M. Woods,
|
[158] |
S. Zhang, M. Merritt, D. E. Woessner, R. E. Lenkinski, A. D. Sherry. PARACEST agents: Modulating MRI contrast via water proton exchange. Acc. Chem. Res., 2003, 36(10): 783–790
|
[159] |
S. Zhang, K. Wu, A. D. Sherry. Gd3+ complexes with slowly exchanging bound-water molecules may offer advantages in the design of responsive MR agents. Invest. Radiol., 2001, 36(2): 82–86
|
[160] |
M. Vandsburger,
|
[161] |
G. Rancan, D. Delli Castelli, S. Aime. MRI CEST at 1 T with large μeff Ln3+ complexes Tm3+-HPDO3A: An efficient MRI pH reporter. Magn. Reson. Med., 2015 (in press)
|
[162] |
D. L. Longo, P. Z. Sun, L. Consolino, F. C. Michelotti, F. Uggeri, S. Aime. A general MRI-CEST ratiometric approach for pH imaging: Demonstration of in vivo pH mapping with iobitridol. J. Am. Chem. Soc., 2014, 136(41): 14333–14336
|
[163] |
E. Terreno,
|
[164] |
E. Terreno,
|
[165] |
E. Terreno, D. Delli Castelli, E. Violante, H. M. Sanders, N. A. Sommerdijk, S. Aime. Osmotically shrunken LIPOCEST agents: An innovative class of magnetic resonance imaging contrast media based on chemical exchange saturation transfer. Chemistry, 2009, 15(6): 1440–1448
|
[166] |
E. Terreno,
|
[167] |
E. Terreno,
|
[168] |
S. Aime, D. Delli Castelli, E. Terreno. Highly sensitive MRI chemical exchange saturation transfer agents using liposomes. Angew. Chem. Int. Ed. Engl., 2005, 44(34): 5513–5515
|
[169] |
S. Aime, C. Carrera, D. Delli Castelli, S. Geninatti Crich, E. Terreno. Tunable imaging of cells labeled with MRI-PARACEST agents. Angew. Chem. Int. Ed. Engl., 2005, 44(12): 1813–1815
|
[170] |
S. Aime, D. Delli Castelli, F. Fedeli, E. Terreno. A paramagnetic MRI-CEST agent responsive to lactate concentration. J. Am. Chem. Soc., 2002, 124(32): 9364–9365
|
[171] |
X. Song,
|
[172] |
A. Bar-Shir, N. N. Yadav, A. A. Gilad, P. C. van Zijl, M. T. McMahon, J. W. Bulte. Single 19F probe for simultaneous detection of multiple metal ions using miCEST MRI. J. Am. Chem. Soc., 2015, 137(1): 78–81
|
[173] |
K. W. Chan, G. Liu, P. C. van Zijl, J. W. Bulte, M. T. McMahon. Magnetization transfer contrast MRI for non-invasive assessment of innate and adaptive immune responses against alginate-encapsulated cells. Biomaterials, 2014, 35(27): 7811–7818
|
[174] |
X. Song,
|
[175] |
G. Liu,
|
[176] |
M. T. McMahon, A. A. Gilad, M. A. DeLiso, S. M. Cromer Berman, J. W. Bulte, P. C. van Zijl. New “multicolor” polypeptide diamagnetic chemical exchange saturation transfer (DIACEST) contrast agents for MRI. Magn. Reson. Med., 2008, 60(4): 803–812
|
[177] |
M. T. McMahon, A. A. Gilad, J. Zhou, P. Z. Sun, J. W. Bulte, P. C. van Zijl. Quantifying exchange rates in chemical exchange saturation transfer agents using the saturation time and saturation power dependencies of the magnetization transfer effect on the magnetic resonance imaging signal (QUEST and QUESP): Ph calibration for poly-L-lysine and a starburst dendrimer. Magn. Reson. Med., 2006, 55(4): 836–847
|
[178] |
K. Snoussi, J. W. Bulte, M. Guéron, P. C. van Zijl. Sensitive CEST agents based on nucleic acid imino proton exchange: Detection of poly(rU) and of a dendrimer-poly(rU) model for nucleic acid delivery and pharmacology. Magn. Reson. Med., 2003, 49(6): 998–1005
|
[179] |
C. Giraudeau,
|
[180] |
O. Diou,
|
[181] |
O. Diou,
|
[182] |
W. Mitzner, W. Lee, D. Georgakopoulos, E. Wagner. Angiogenesis in the mouse lung. Am. J. Pathol., 2000, 157(1): 93–101
|
[183] |
A. H. Schmieder,
|
[184] |
E. M. Wagner,
|
[185] |
U. Nöth, P. Gröhn, A. Jork, U. Zimmermann, A. Haase, J. Lutz. 19F-MRI in vivo determination of the partial oxygen pressure in perfluorocarbon-loaded alginate capsules implanted into the peritoneal cavity and different tissues. Magn. Reson. Med., 1999, 42(6): 1039–1047
|
[186] |
R. P. Mason, F. M. Jeffrey, C. R. Malloy, E. E. Babcock, P. P. Antich. A noninvasive assessment of myocardial oxygen tension: 19F NMR spectroscopy of sequestered perfluorocarbon emulsion. Magn. Reson. Med., 1992, 27(2): 310–317
|
[187] |
F. Goh, R. Long Jr., N. Simpson, A. Sambanis. Dual perfluorocarbon method to noninvasively monitor dissolved oxygen concentration in tissue engineered constructs in vitro and in vivo. Biotechnol. Prog., 2011, 27(4): 1115–1125
|
[188] |
F. Goh, A. Sambanis. In vivo noninvasive monitoring of dissolved oxygen concentration within an implanted tissue-engineered pancreatic construct. Tissue Eng. Part C Methods, 2011, 17(9): 887–894
|
[189] |
L. Hu, J. Chen, X. Yang, S. D. Caruthers, G. M. Lanza, S. A. Wickline. Rapid quantification of oxygen tension in blood flow with a fluorine nanoparticle reporter and a novel blood flow-enhanced-saturation-recovery sequence. Magn. Reson. Med., 2013, 70(1): 176–183
|
[190] |
L. Lemaire,
|
/
〈 |
|
〉 |