
Cardiac Remote Conditioning and Clinical Relevance: All Together Now!
Kristin Luther, Yang Song, Yang Wang, Xiaoping Ren, W. Keith Jones
Engineering ›› 2015, Vol. 1 ›› Issue (4) : 490-499.
Cardiac Remote Conditioning and Clinical Relevance: All Together Now!
Acute myocardial infarction (AMI) is the leading cause of death and disability worldwide. Timely reperfusion is the standard of care and results in decreased infarct size, improving patient survival and prognosis. However, 25% of patients proceed to develop heart failure (HF) after myocardial infarction (MI) and 50% of these will die within five years. Since the size of the infarct is the major predictor of the outcome, including the development of HF, therapies to improve myocardial salvage have great potential. Over the past three decades, a number of stimuli have been discovered that activate endogenous cardioprotective pathways. In ischemic preconditioning (IPC) and ischemic postconditioning, ischemia within the heart initiates the protection. Brief reversible episodes of ischemia in vascular beds remote from the heart can also trigger cardioprotection when applied before, during, or immediately after myocardial ischemia—known as remote ischemic pre-, per-, and post-conditioning, respectively. Although the mechanism of remote ischemic preconditioning (RIPC) has not yet been fully elucidated, many mechanistic components are shared with IPC. The discovery of RIPC led to research into the use of remote non-ischemic stimuli including nerve stimulation (spinal and vagal), and electroacupuncture (EA). We discovered and, with others, have elucidated mechanistic aspects of a non-ischemic phenomenon we termed remote preconditioning of trauma (RPCT). RPCT operates via neural stimulation of skin sensory nerves and has similarities and differences to nerve stimulation and EA conducted at acupoints. We show herein that RPCT can be mimicked using electrical stimulation of the abdominal midline (EA-like treatment) and that this modality of activating cardioprotection is powerful as both a preconditioning and a postconditioning stimulus (when applied at reperfusion). Investigations of these cardioprotective phenomena have led to a more integrative understanding of mechanisms related to cardioprotection, and in the last five to ten years, it has become clear that the mechanisms are similar, whether induced by ischemic or non-ischemic stimuli. Taking together much of the data in the literature, we propose that all of these cardioprotective “conditioning” phenomena represent activation from different entry points of a cardiac conditioning network that converges upon specific mediators and effectors of myocardial cell survival, including NF-кB, Stat3/5, protein kinase C, bradykinin, and the mitoKATP channel. Nervous system pathways may represent a novel mechanism for initiating conditioning of the heart and other organs. IPC and RIPC have proven difficult to translate clinically, as they have associated risks and cannot be used in some patients. Because of this, the use of neural and nociceptive stimuli is emerging as a potential non-ischemic and non-traumatic means to initiate cardiac conditioning. Clinical relevance is underscored by the demonstration of postconditioning with one of these modalities, supporting the conclusion that the development of pharmaceuticals and electroceuticals for this purpose is an area ripe for clinical development.
remote cardioprotection / cardiac conditioning / non-ischemic conditioning / peripheral nociceptive stimulus / neural and molecular mechanism / clinical feasibility / electroceuticals
[1] |
C. E. Murry, R. B. Jennings, K. A. Reimer. Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation, 1986, 74(5): 1124–1136
|
[2] |
J. A. Auchampach, G. J. Gross. Adenosine A1 receptors, KATP channels, and ischemic preconditioning in dogs. Am. J. Physiol., 1993, 264(5 Pt 2): H1327–H1336
|
[3] |
Y. Guo, W. J. Wu, Y. Qiu, X. L. Tang, Z. Yang, R. Bolli. Demonstration of an early and a late phase of ischemic preconditioning in mice. Am. J. Physiol., 1998, 275(4 Pt 2): H1375–H1387
|
[4] |
D. M. Yellon, A. Dana. The preconditioning phenomenon: A tool for the scientist or a clinical reality? Circ. Res., 2000, 87(7): 543–550
|
[5] |
M. A. Leesar, M. F. Stoddard, S. Manchikalapudi, R. Bolli. Bradykinin-induced preconditioning in patients undergoing coronary angioplasty. J. Am. Coll. Cardiol., 1999, 34(3): 639–650
|
[6] |
B. Ji,
|
[7] |
L. K. Teoh, R. Grant, J. A. Hulf, W. B. Pugsley, D. M. Yellon. A comparison between ischemic preconditioning, intermittent cross-clamp fibrillation and cold crystalloid cardioplegia for myocardial protection during coronary artery bypass graft surgery. Cardiovasc. Surg., 2002, 10(3): 251–255
|
[8] |
G. Heusch. Cardioprotection: Chances and challenges of its translation to the clinic. Lancet, 2013, 381(9861): 166–175
|
[9] |
M. S. Marber, D. S. Latchman, J. M. Walker, D. M. Yellon. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation, 1993, 88(3): 1264–1272
|
[10] |
S. Hoshida, N. Yamashita, K. Otsu, M. Hori. Repeated physiologic stresses provide persistent cardioprotection against ischemia-reperfusion injury in rats. J. Am. Coll. Cardiol., 2002, 40(4): 826–831
|
[11] |
K. Przyklenk, B. Bauer, M. Ovize, R. A. Kloner, P. Whittaker. Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation, 1993, 87(3): 893–899
|
[12] |
T. B. McClanahan, B. S. Nao, L. J. Wolke, B. J. Martin, T. E. Metz, K. P. Gallagher. Brief renal occlusion and reperfusion reduces myocardial infarct size in rabbits. FASEB J., 1993, 7: A118 (abstract)
|
[13] |
G. Heusch, H. E. Bøtker, K. Przyklenk, A. Redington, D. Yellon. Remote ischemic conditioning. J. Am. Coll. Cardiol., 2015, 65(2): 177–195
|
[14] |
S. M. Davidson,
|
[15] |
K. Przyklenk. ‘Going out on a limb’: SDF-1α/CXCR4 signaling as a mechanism of remote ischemic preconditioning? Basic Res. Cardiol., 2013, 108(5): 382
|
[16] |
T. Rassaf, M. Totzeck, U. B. Hendgen-Cotta, S. Shiva, G. Heusch, M. Kelm. Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circ. Res., 2014, 114(10): 1601–1610
|
[17] |
J. Li,
|
[18] |
K. Przyklenk. microRNA-144: The ‘what’ and ‘how’ of remote ischemic conditioning? Basic Res. Cardiol., 2014, 109(5): 429
|
[19] |
B. C. Gho, R. G. Schoemaker, M. A. van den Doel, D. J. Duncker, P. D. Verdouw. Myocardial protection by brief ischemia in noncardiac tissue. Circulation, 1996, 94(9): 2193–2200
|
[20] |
C. Weinbrenner, M. Nelles, N. Herzog, L. Sárváry, R. H. Strasser. Remote preconditioning by infrarenal occlusion of the aorta protects the heart from infarction: A newly identified non-neuronal but PKC-dependent pathway. Cardiovasc. Res., 2002, 55(3): 590–601
|
[21] |
S. Y. Lim, D. M. Yellon, D. J. Hausenloy. The neural and humoral pathways in remote limb ischemic preconditioning. Basic Res. Cardiol., 2010, 105(5): 651–655
|
[22] |
W. R. Davies,
|
[23] |
L. Candilio,
|
[24] |
L. Li,
|
[25] |
Z. Q. Zhao,
|
[26] |
G. Heusch. Treatment of myocardial ischemia/reperfusion injury by ischemic and pharmacological postconditioning. Compr. Physiol., 2015, 5(3): 1123–1145
|
[27] |
C. M. Li, X. H. Zhang, X. J. Ma, M. Luo. Limb ischemic postconditioning protects myocardium from ischemia-reperfusion injury. Scand. Cardiovasc. J., 2006, 40(5): 312–317
|
[28] |
F. Kerendi,
|
[29] |
L. Breivik, E. Helgeland, E. K. Aarnes, J. Mrdalj, A. K. Jonassen. Remote postconditioning by humoral factors in effluent from ischemic preconditioned rat hearts is mediated via PI3K/Akt-dependent cell-survival signaling at reperfusion. Basic Res. Cardiol., 2011, 106(1): 135–145
|
[30] |
S. Tamareille,
|
[31] |
M. R. Schmidt,
|
[32] |
H. E. Bøtker,
|
[33] |
P. Meybohm,
|
[34] |
S. Pasupathy, S. Homer-Vanniasinkam. Surgical implications of ischemic preconditioning. Arch. Surg., 2005, 140(4): 405–409, discussion 410
|
[35] |
A. J. Ludman, D. M. Yellon, D. J. Hausenloy. Cardiac preconditioning for ischaemia: Lost in translation. Dis. Model. Mech., 2010, 3(1−2): 35–38
|
[36] |
M. Thielmann,
|
[37] |
J. De Vries, M. J. De Jongste, G. Spincemaille, M. J. Staal. Spinal cord stimulation for ischemic heart disease and peripheral vascular disease. Adv. Tech. Stand. Neurosurg., 2007, 32: 63–89
|
[38] |
S. S. Kong, J. J. Liu, X. J. Yu, Y. Lu, W. J. Zang. Protection against ischemia-induced oxidative stress conferred by vagal stimulation in the rat heart: Involvement of the AMPK-PKC pathway. Int. J. Mol. Sci., 2012, 13(11): 14311–14325
|
[39] |
J. H. Dong, Y. X. Liu, J. Zhao, H. J. Ma, S. M. Guo, R. R. He. High-frequency electrical stimulation of femoral nerve reduces infarct size following myocardial ischemia-reperfusion in rats. Acta Physiol. Sin., 2004, 56(5): 620–624
|
[40] |
J. Gao, W. Fu, Z. Jin, X. Yu. A preliminary study on the cardioprotection of acupuncture pretreatment in rats with ischemia and reperfusion: Involvement of cardiac β-adrenoceptors. J. Physiol. Sci., 2006, 56(4): 275–279
|
[41] |
W. Zhou,
|
[42] |
W. K. Jones,
|
[43] |
A. C. Merlocco,
|
[44] |
H. Jneid, M. Leessar, R. Bolli. Cardiac preconditioning during percutaneous coronary interventions. Cardiovasc. Drugs. Ther., 2005, 19(3): 211–217
|
[45] |
S. R. Walsh, T. Tang, U. Sadat, D. P. Dutka, M. E. Gaunt. Cardioprotection by remote ischaemic preconditioning. Br. J. Anaesth., 2007, 99(5): 611–616
|
[46] |
G. Heusch. Molecular basis of cardioprotection: Signal transduction in ischemic pre-, post-, and remote conditioning. Circ. Res., 2015, 116(4): 674–699
|
[47] |
P. Xin,
|
[48] |
F. Prunier,
|
[49] |
M. Wei,
|
[50] |
R. Hattori,
|
[51] |
N. Suleman, S. Somers, R. Smith, L. H. Opie, S. C. Lecour. Dual activation of STAT-3 and Akt is required during the trigger phase of ischaemic preconditioning. Cardiovasc. Res., 2008, 79(1): 127–133
|
[52] |
J. Sachdeva, W. Dai, P. Z. Gerczuk, R. A. Kloner. Combined remote perconditioning and postconditioning failed to attenuate infarct size and contractile dysfunction in a rat model of coronary artery occlusion. J. Cardiovasc. Pharmacol. Ther., 2014, 19(6): 567–573
|
[53] |
F. Z. Meerson,
|
[54] |
E. Vanoli, G. M. De Ferrari, M. Stramba-Badiale, S. S. Hull Jr., R. D. Foreman, P. J. Schwartz. Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ. Res., 1991, 68(5): 1471–1481
|
[55] |
G. Zuanetti, G. M. De Ferrari, S. G. Priori, P. J. Schwartz. Protective effect of vagal stimulation on reperfusion arrhythmias in cats. Circ. Res., 1987, 61(3): 429–435
|
[56] |
M. Goto, Y. Liu, X. M. Yang, J. L. Ardell, M. V. Cohen, J. M. Downey. Role of bradykinin in protection of ischemic preconditioning in rabbit hearts. Circ. Res., 1995, 77(3): 611–621
|
[57] |
R. Schulz, H. Post, C. Vahlhaus, G. Heusch. Ischemic preconditioning in pigs: A graded phenomenon: Its relation to adenosine and bradykinin. Circulation, 1998, 98(10): 1022–1029
|
[58] |
C. Erşahin, D. E. Euler, W. H. Simmons. Cardioprotective effects of the aminopeptidase P inhibitor apstatin: Studies on ischemia/reperfusion injury in the isolated rat heart. J. Cardiovasc. Pharmacol., 1999, 34(4): 604–611
|
[59] |
R. G. Schoemaker, C. L. van Heijningen. Bradykinin mediates cardiac preconditioning at a distance. Am. J. Physiol. Heart Circ. Physiol., 2000, 278(5): H1571–H1576
|
[60] |
R. K. Kudej,
|
[61] |
K. L. Redington,
|
[62] |
X. Ren, Y. Wang, W. K. Jones. TNF-α is required for late ischemic preconditioning but not for remote preconditioning of trauma. J. Surg. Res., 2004, 121(1): 120–129
|
[63] |
S. Eddicks, K. Maier-Hauff, M. Schenk, A. Müller, G. Baumann, H. Theres. Thoracic spinal cord stimulation improves functional status and relieves symptoms in patients with refractory angina pectoris: The first placebo-controlled randomised study. Heart, 2007, 93(5): 585–590
|
[64] |
G. A. Sgueglia, A. Sestito. Spinal cord stimulation: A new form of pain modulatory treatment in cardiac syndrome X. Am. J. Med., 2007, 120(9): e17
|
[65] |
E. M. Southerland,
|
[66] |
K. Sroka. On the genesis of myocardial ischemia. Z. Kardiol., 2004, 93(10): 768–783
|
[67] |
D. L. Jardine,
|
[68] |
E. A. Jankowska, P. Ponikowski, M. F. Piepoli, W. Banasiak, S. D. Anker, P. A. Poole-Wilson. Autonomic imbalance and immune activation in chronic heart failure—Pathophysiological links. Cardiovasc. Res., 2006, 70(3): 434–445
|
[69] |
M. T. Tsou, C. H. Huang, J. H. Chiu. Electroacupuncture on PC6 (Neiguan) attenuates ischemia/reperfusion injury in rat hearts. Am. J. Chin. Med., 2004, 32(6): 951–965
|
[70] |
X. R. Wang, J. Xiao, D. J. Sun. Myocardial protective effects of electroacupuncture and hypothermia on porcine heart after ischemia/reperfusion. Acupunct. Electrother. Res., 2003, 28(3−4): 193–200
|
[71] |
K. L. Redington,
|
[72] |
C. R. Hampton,
|
[73] |
M. Tranter,
|
[74] |
P. Y. Liu, Y. Tian, S. Y. Xu. Mediated protective effect of electroacupuncture pretreatment by miR-214 on myocardial ischemia/reperfusion injury. J. Geriatr. Cardiol., 2014, 11(4): 303–310
|
[75] |
D. Y. Wan, Z. Zhang, H. H. Yang. Cardioprotective effect of miR-214 in myocardial ischemic postconditioning by down-regulation of hypoxia inducible factor 1, α subunit inhibitor. Cell. Mol. Biol. (Noisy-le-grand), 2015, 61(2): 1–6
|
[76] |
W. K. Jones,
|
[77] |
J. Bagust, Y. Chen, G. A. Kerkut. Spread of the dorsal root reflex in an isolated preparation of hamster spinal cord. Exp. Physiol., 1993, 78(6): 799–809
|
[78] |
C. M. Brooks, K. Koizumi. Origin of the dorsal root reflex. J. Neurophysiol., 1956, 19(1): 60–74
|
[79] |
K. Koketsu. Intracellular potential changes of primary afferent nerve fibers in spinal cords of cats. J. Neurophysiol., 1956, 19(5): 375–392
|
[80] |
J. Bagust, I. D. Forsythe, G. A. Kerkut. An investigation of the dorsal root reflex using an in vitro preparation of the hamster spinal cord. Brain Res., 1985, 331(2): 315–325
|
[81] |
G. P. McCouch, G. M. Austin. Postsynaptic source of dorsal root reflex. J. Neurophysiol., 1958, 21(3): 217–223
|
[82] |
J. Bagust, G. A. Kerkut, N. I. Rakkah. Differential sensitivity of dorsal and ventral root activity to magnesium and 2-amino-5-phosphonovalerate (APV) in an isolated mammalian spinal cord preparation. Brain Res., 1989, 479(1): 138–144
|
[83] |
A. Hassouna, B. M. Matata, M. Galiñanes. PKC-ε is upstream and PKC-α is downstream of mitoKATP channels in the signal transduction pathway of ischemic preconditioning of human myocardium. Am. J. Physiol. Cell Physiol., 2004, 287(5): C1418–C1425
|
[84] |
S. Y. Lim, D. J. Hausenloy. Remote ischemic conditioning: From bench to bedside. Front. Physiol., 2012, 3: 27
|
[85] |
G. J. Gross, J. E. Baker, J. Moore, J. R. Falck, K. Nithipatikom. Abdominal surgical incision induces remote preconditioning of trauma (RPCT) via activation of bradykinin receptors (BK2R) and the cytochrome P450 epoxygenase pathway in canine hearts. Cardiovasc. Drugs Ther., 2011, 25(6): 517–522
|
[86] |
E. R. Gross, A. K. Hsu, T. J. Urban, D. Mochly-Rosen, G. J. Gross. Nociceptive-induced myocardial remote conditioning is mediated by neuronal gamma protein kinase C. Basic Res. Cardiol., 2013, 108(5): 381
|
[87] |
G. J. Gross, K. M. Gauthier, J. Moore, W. B. Campbell, J. R. Falck, K. Nithipatikom. Evidence for role of epoxyeicosatrienoic acids in mediating ischemic preconditioning and postconditioning in dog. Am. J. Physiol. Heart Circ. Physiol., 2009, 297(1): H47–H52
|
[88] |
Q. Chai, J. Liu, Y. Hu. Cardioprotective effect of remote preconditioning of trauma and remote ischemia preconditioning in a rat model of myocardial ischemia/reperfusion injury. Exp. Ther. Med., 2015, 9(5): 1745–1750
|
[89] |
N. Seyedi, T. Win, H. M. Lander, R. Levi. Bradykinin B2-receptor activation augments norepinephrine exocytosis from cardiac sympathetic nerve endings. Mediation by autocrine/paracrine mechanisms. Circ. Res., 1997, 81(5): 774–784
|
[90] |
Y. J. Li, J. Peng. The cardioprotection of calcitonin gene-related peptide-mediated preconditioning. Eur. J. Pharmacol., 2002, 442(3): 173–177
|
[91] |
S. Wolfrum, J. Nienstedt, M. Heidbreder, K. Schneider, P. Dominiak, A. Dendorfer. Calcitonin gene related peptide mediates cardioprotection by remote preconditioning. Regul. Pept., 2005, 127(1−3): 217–224
|
[92] |
Q. J. Song, Y. J. Li, H. W. Deng. Early and delayed cardioprotection by heat stress is mediated by calcitonin gene-related peptide. Naunyn Schmiedebergs Arch. Pharmacol., 1999, 359(6): 477–483
|
[93] |
D. Li,
|
[94] |
G. W. Dorn II, T. Force. Protein kinase cascades in the regulation of cardiac hypertrophy. J. Clin. Invest., 2005, 115(3): 527–537
|
[95] |
P. Ping,
|
[96] |
S. Wolfrum, K. Schneider, M. Heidbreder, J. Nienstedt, P. Dominiak, A. Dendorfer. Remote preconditioning protects the heart by activating myocardial PKCε-isoform. Cardiovasc. Res., 2002, 55(3): 583–589
|
[97] |
E. N. Churchill, D. Mochly-Rosen. The roles of PKCδ and ε isoenzymes in the regulation of myocardial ischaemia/reperfusion injury. Biochem. Soc. Trans., 2007, 35(5): 1040–1042
|
[98] |
K. Inagaki,
|
[99] |
C. Vahlhaus, R. Schulz, H. Post, R. Onallah, G. Heusch. No prevention of ischemic preconditioning by the protein kinase C inhibitor staurosporine in swine. Circ. Res., 1996, 79(3): 407–414
|
[100] |
R. Brandman, M. H. Disatnik, E. Churchill, D. Mochly-Rosen. Peptides derived from the C2 domain of protein kinase Cε (εPKC) modulate εPKC activity and identify potential protein-protein interaction surfaces. J. Biol. Chem., 2007, 282(6): 4113–4123
|
[101] |
G. W. Dorn II, D. Mochly-Rosen. Intracellular transport mechanisms of signal transducers. Annu. Rev. Physiol., 2002, 64: 407–429
|
[102] |
G. J. Gross. The role of mitochondrial KATP channels in cardioprotection. Basic Res. Cardiol., 2000, 95(4): 280–284
|
[103] |
O. Oldenburg,
|
[104] |
S. Pasupathy, S. Homer-Vanniasinkam. Ischaemic preconditioning protects against ischaemia/reperfusion injury: Emerging concepts. Eur. J. Vasc. Endovasc. Surg., 2005, 29(2): 106–115
|
[105] |
Z. Lacza, J. A. Snipes, A. W. Miller, C. Szabó, G. Grover, D. W. Busija. Heart mitochondria contain functional ATP-dependent K+ channels. J. Mol. Cell. Cardiol., 2003, 35(11): 1339–1347
|
[106] |
G. R. Gaudette, I. B. Krukenkamp, A. E. Saltman, H. Horimoto, S. Levitsky. Preconditioning with PKC and the ATP-sensitive potassium channels: A codependent relationship. Ann. Thorac. Surg., 2000, 70(2): 602–608
|
[107] |
Y. Nozawa, T. Miura, T. Miki, Y. Ohnuma, T. Yano, K. Shimamoto. Mitochondrial KATP channel-dependent and-independent phases of ischemic preconditioning against myocardial infarction in the rat. Basic Res. Cardiol., 2003, 98(1): 50–58
|
[108] |
R. K. Kharbanda, T. T. Nielsen, A. N. Redington. Translation of remote ischaemic preconditioning into clinical practice. Lancet, 2009, 374(9700): 1557–1565
|
[109] |
S. Reardon. Electroceuticals spark interest. Nature, 2014, 511(7507): 18
|
[110] |
M. Tirrell. GlaxoSmithKline’s big bet on electroceuticals. CNBC News, 2015-03-11. http://www.cnbc.com/2015/03/11/glaxosmithklines-big-bet-on-electroceuticals.html
|
/
〈 |
|
〉 |