智能源于人、拓于工——人工智能发展的一点思考
Intelligence Originating from Human Beings and Expanding in Industry— A View on the Development of Artificial Intelligence
人工智能(AI)旨在模拟人脑中信息存储和处理机制等智能行为,使机器具有一定程度的智能水平。随着互联网、大数据、云计算和深度学习等新一代信息技术的飞速发展,目前AI领域的研究和应用已经取得重要进展。本文将深入分析与AI密切相关的计算机科学、控制科学、类脑智能、人脑智能等学科或领域之间的交融与历史演进;指出神经科学、脑科学与认知科学中有关脑的结构与功能机制的研究成果,为构建智能计算模型提供了重要的启发,并从逻辑模型及系统、神经元及网络模型、视觉神经分层机制等方面,分别阐述智能的驱动与发展;最后从互联网的计算理论、AI的演算和计算的融合、类脑智能的模型和机理、AI对神经科学的推动作用、反馈计算的算法设计与控制系统的能级五个方面,对AI的发展趋势进行了展望。
Artificial Intelligence (AI) aims to simulate information storage and processing mechanisms and other intelligent behaviors of a human brain, so that the machine has a certain level of intelligence. With the rapid development of the new generation of information technology, such as the Internet, big data, cloud computing, and deep learning, researches and applications of AI have made and are making important progresses. In this paper, the historical integration and evolution of computer science, control science, brain-inspired intelligence, human brain intelligence, and other disciplines or fields closely related to AI are analyzed in depth; then it is pointed out that the research results on the structure and functional mechanism of brain from neuroscience, brain science and cognitive science provide some important inspirations for the construction of an intelligent computing model. Moreover, the drives and developments of AI are discussed from the aspects of logic model and system, neuron network model, visual nerve hierarchy mechanism, etc. Finally, the development trend of AI is prospected from the following five aspects: the computational theory of the Internet, the integration of AI calculus and computation, the model and mechanism of brain-inspired intelligence, the impetus of AI to neuroscience, and the algorithm design of feedback computation and the energy level of the control system.
人工智能 / 人脑智能 / 类脑智能 / 智能发展 / 学科演进
人工智能 / 人脑智能 / 类脑智能 / 智能发展 / 学科演进 / artificial intelligence / human brain intelligence / brain-inspired intelligence / intelligence development / discipline evolution
| [1] |
林崇德, 杨治良, 黄希庭. 心理学大辞典 [M]. 上海: 上海出版社, 2003. Lin C D, Yang Z L, Huang X T. A dictionary of psychology [M]. Shanghai: Shanghai Publishing House, 2003. |
| [2] |
Turing A M. Computing machinery intelligence [J]. Mind, 1950, 59: 433–460. |
| [3] |
Chomsky N. Three models for the description of language [J]. IEEE Transactions on Information Theory, 1956, 2(3): 113–124. |
| [4] |
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks [J]. Science, 2006, 313(5786): 504–507. |
| [5] |
McCulloch W S, Pitts W. A logical calculus of the ideas immanent in nervous activity [J]. The Bulletin of Mathematical Biophysics, 1943, 5(4): 115–133. |
| [6] |
Hebb D O. The organization of behavior [M]. New York: Wiley, 1949. |
| [7] |
Rosenblatt F. The perceptron: A probabilistic model for information storage and organization in the brain [J]. Psychological Review, 1958, 65(6): 386–408. |
| [8] |
Minsky M, Papert S. Perceptrons [M]. Oxford: MIT Press, 1969. |
| [9] |
Werbos P J. Backpropagation through time: What it does and how to do it [J]. Proceedings of the IEEE, 1990, 78(10): 1550–1560. |
| [10] |
Hopfield J J. Neural networks and physical systems with emergent collective computational abilities [J]. Proceedings of the National Academy of Sciences, 1982, 79(8): 2554–2558. |
| [11] |
Ackley D H, Hinton G E, Sejnowski T J. A learning algorithm for elmholtz machines [J]. Cognitive Science, 1985, 9(1): 147–169. |
| [12] |
Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors [J]. Nature, 1986, 323: 533–536. |
| [13] |
Hubel D H, Wiesel T N. Early exploration of the visual cortex [J]. Neuron, 1998, 20: 401–412. |
| [14] |
Lecun Y, Boser B, Denker J S, et al. Backpropagation applied to handwritten zip code recognition [J]. Neural Computation, 1989 (1): 541–551. |
| [15] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks [C]. Nevada: International Conference on Neural Information Processing Systems, 2012. |
| [16] |
Chen T, Du Z, Sun N, et al. DianNao: A small-footprint highthroughput accelerator for ubiquitous machine learning [C]. Salt Lake City: Proceedings of the 19th International Conference on Architectural Support for Programming Languages and Operating Systems, 2014. |
| [17] |
Carver M. Analog VLSI and neural systems [M]. Boston: AddisonWesley Mass, 1989. |
| [18] |
Wolfgang M. Networks of spiking neurons: The third generation of neural network models [J]. Neural Networks, 1997, 10(9): 1659–1671. |
| [19] |
Merolla P A. A million spiking-neuron integrated circuit with a scalable communication network and interface [J]. Science, 2014, 345 (6197): 668–673. |
| [20] |
Chua L O. Memristor—The missing circuit element [J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507–519. |
| [21] |
Dmitri B S, Gregory S S, Duncan R S. The missing memristor found [J]. Nature, 2008, 453: 80–83. |
| [22] |
Borghetti J. Memristive switches enable stateful logic operations via material implication [J]. Nature, 2010, 464: 873–876. |
| [23] |
Irem B, Manuel L G, Nandakumar S R, et al. Neuromorphic computing with multi-memristive synapses [J]. Nature Communication, 2018, 9: 2514–2529. |
| [24] |
Hochreiter S, Schmidhuber J. Long short-term memory [J]. Neural Computation, 1997, 9(8): 1735–1780. |
| [25] |
Andrea B, Caswell B, Benigno U, et al. Vector-based navigation using grid-like representations in artificial agents [J]. Nature, 2018, 557: 429–433. |
| [26] |
Collins A M, Quillian M R. Retrieval time from semantic memory [J]. Journal of verbal learning and verbal behavior, 1969, 8(2): 240–248. |
| [27] |
McClelland J, Rumelhart D. An interactive activation model of context effects in letter perception: Part 1. An account of basic findings [J]. Psychology Review, 1981, 88: 375–407. |
| [28] |
Bengio Y, Ducharme R, Vincent P, et al. A neural probabilistic language model [J]. Journal of Machine Learning Research, 2003, (3): 1137–1155. |
| [29] |
Mikolov T, Chen K, Corrado C, et al. Efficient estimation of word representation in vector space [C]. Florida: Proceedings of Workshop at ICLR, 2013. |
| [30] |
Testolin A, Stoianov I, Zorzi M. Letter perception emerges from unsupervised deep learning and recycling of natural image features [J]. Human Behaviour, 2017, 1(9): 657–664. |
| [31] |
Wiener N. Cybernetics: Or control and communication in the animal and the machine [M]. Cambridge: The MIT Press, 1948. |
| [32] |
Minsky M L. Theory of neural-analog reinforcement systems and its application to the brain-model problem [D]. Princeton: Princeton University (Doctoral dissertation), 1954. |
| [33] |
Zhuang Y, Wu F, Chen C, et al. Challenges and opportunities: From big data to knowledge in AI 2.0 [J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 3–14. |
| [34] |
Li W, Wu W, Wang H, et al. Crowd intelligence in AI 2.0 era [J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 15–43. |
| [35] |
Peng Y, Zhu W, Zhao Y, et al. Cross-media analysis and reasoning: Advances and directions [J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 44–57. |
| [36] |
Zheng N, Liu Z, Ren P, et al. Hybrid-augmented intelligence: Collaboration and cognition [J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 153–179. |
| [37] |
Tian Y, Chen X, Xiong H, et al. Towards human-like and transhuman perception in AI 2.0: A review [J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 58–67. |
| [38] |
Zhang T, Li Q, Zhang C, et al. Current trends in the development of intelligent unmanned autonomous systems [J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 68–85. |
| [39] |
Li B, Hou B, Yu W, et al. Applications of artificial intelligence in intelligent manufacturing: A review [J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 86–96. |
| [40] |
Marblestone A H, Wayne G, Kording K P. Towards an integration of deep learning and neuroscience [J]. Frontiers in Computational Neuroscience, 2016, 10(5): 1–60. |
中国工程院咨询项目“工程科技颠覆性技术战略研究”(2017-ZD-10);国家自然科学基金重大研究计划集成项目(91218301)()
/
| 〈 |
|
〉 |