几种新体制半导体激光器及相关产业的现状、挑战和思考
Several New Semiconductor Lasers and Status, Challenges and Insights of Related Industries
半导体激光器产业体量大、辐射和带动能力强,作为激光器工业的基础,被广泛应用在光通信、光信息处理、新型加工、激光显示、生物和医学传感等工业、军事和消费生活领域。为了适应逐渐扩大的应用范围,满足不同应用场景所提出的新要求,半导体激光器领域近年来通过学科交叉渗透不断地引入了各种新机制、新概念以及新结构,大大优化了其波长覆盖范围、光束质量、器件体积和功耗、调制速度以及输出功率。本文通过对比几种新型激光器的物理内涵、结构设计及制备手段,介绍了几种应用前景广泛且发展势头强劲的半导体激光器。结合我国相关产业的发展现状指出,半导体激光器产业的发展仍然应与应用紧密结合,通过市场和强大的系统开发能力闭环优化器件性能,提升核心技术,通过交叉学科融通不断引入新概念、新结构和新工艺。同时,结合国内政策导向优势,在垂直外腔面发射激光器、微纳结构激光器以及拓扑绝缘体激光器等几个发展势头强劲的新型激光技术中加大投入,进行批量生产和可控制备研发,力争在国际相关领域的竞争中抢占战术制高点。
As the basis of the whole laser industry, the semiconductor laser industry is not only large-scaled but also has strong radiation and driving capacities. The semiconductor lasers are widely used in industrial, military, and living consumption fields such as optical communication, optical information processing, novel manufacturing, laser display, and biological and medical sensing. To adapt to the gradually expanding application range and satisfy the new requirements of different application scenarios, various new mechanisms, concepts, and structures have been introduced into the semiconductor laser industry through interdisciplinary penetration, greatly optimizing the wavelength coverage, beam quality, device volume, power consumption, modulation speed, and output power of the semiconductor lasers. This paper introduces several rapidly developed new semiconductor lasers by comparing their physical connotation, structural design, and preparation methods. Considering the current development status of related industries in China, we suggest that the development of the semiconductor laser industry should be closely combined with industrial application. The performance of the semiconductor lasers should be optimized in a closed-loop manner relying on the market capacity and the strong systematic development ability in China to promote the key technologies. New principles, structures, and processes should be continually introduced into this industry through interdisciplinary integration. Meanwhile, using the policy-oriented advantages in China, we suggest to increase investment in vertical external cavity surface emitting lasers, micro-nano lasers, and topological insulator lasers and conduct mass production and controllable production, thus to seize the leading position in international competition in the related fields.
半导体激光器 / 光泵浦垂直外腔面发射激光器 / 纳米激光器 / 拓扑绝缘体激光器
半导体激光器 / 光泵浦垂直外腔面发射激光器 / 纳米激光器 / 拓扑绝缘体激光器 / semiconductor lasers / optically pumped vertical external cavity surface emitting lasers / nanolasers / topological insulator lasers
| [1] |
Yushi K, Yarborough J M, Li L, et al. Continuous-wave all-solidstate 244 nm deep ultraviolet laser source by fourth-harmonic generation of an optically pumped semiconductor laser using CsLiB6O10 in an external resonator [J]. Optics Letters, 2008, 33(15): 1705–1707. |
| [2] |
Bondaz T A G, Lawrain A, Moloney J V, et al. Generation and stabilization of continuous-wave THz emission from a bi-color VECSEL [J]. IEEE Photonics Technology Letters, 2019, 31(19): 1569–1572. |
| [3] |
Heinen B, Wang T L, Sparenberg M, et al. 106 W continuouswave output power from vertical-external-cavity surface-emitting laser [J]. Electronics Letters, 2012, 48(9): 516–517. |
| [4] |
Wilcox K G, Quarterman A H, Apostolopoulos V, et al. 175 GHz, 400-fs-pulse harmonically mode-locked surface emitting semiconductor laser [J]. Optics Express, 2012, 20(7): 7040–7045. |
| [5] |
Quarterman A H, Wilcox K G, Apostolopoulos V, et al. A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses [J]. Nature Photonics, 2009, 3(12): 729–731. |
| [6] |
Kantola E, Leinonen T, Ranta S, et al. High-efficiency 20 W yellow VECSEL [J]. Optics Express, 2014, 22(6): 6372–6380. |
| [7] |
Hermann P K, Nechay K, Penttinen J. AlGaAs-based verticalexternal-cavity surface-emitting laser exceeding 4 W of direct emission power in the 740–790 nm spectral range [J]. Optics Letters, 2018, 43(7): 1578. |
| [8] |
Wilcox K G , Tropper A C , Beere H E , et al. 4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation [J]. Optics Express, 2013, 21(2): 1599–1605. |
| [9] |
Heinen B, Wang T L, Sparenberg M, et al. 106 W continuouswave output power from vertical-external-cavity surface-emitting laser [J]. Electronics Letters, 2012, 48(9): 516–517. |
| [10] |
Hou G Y, Shu S, Shi S Z, et al. High power (>27 W) semiconductor disk laser based on pre-metalized diamond heatspreader [J]. IEEE Photonics Journal, 2019, 11(2) 1–8. |
| [11] |
Klopp P, Griebner U, Zorn M, et al. Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser [J]. Applied Physics Letters, 2011, 98(7): 1–3. |
| [12] |
Rantamäki A, Rautiainen J, Sirbu A, et al. 1.56μm 1 watt single frequency semiconductor disk laser [J]. Optics Express, 2013, 21(2):2355–2360. |
| [13] |
Kaspar S, Rattunde M, Tino Töpper, et al. Linewidth narrowing and power scaling of single-frequency 2.X μm GaSb-based semiconductor disk lasers [J]. IEEE Journal of Quantum Electronics, 2013, 49(3): 314. |
| [14] |
Hill M T, Yok-siang O, Barry S, et al. Lasing in metallic-coated nanocavities [J]. Nature Photonics, 2007, 1: 589–594. |
| [15] |
Li Y Z, Zhang J X, Huang D, et al. Room-temperature continuouswave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity [J]. Nature Nanotech nology, 2017, 12: 987–992. |
| [16] |
Harari G, Bandres M A, Lumer Y, et al. Topological Insulator Laser: Theory [J]. Science, 2018, 359(6381): 1–6. |
| [17] |
Bandres M A, Wittek S, Harari G, et al. Topological insulator laser: Experiments [J]. Science, 2018, 359(6381): 1–5. |
| [18] |
Shao Z K, Chen H Z, Wang S, et al. A high-performance topological bulk laser based on band-inversion-induced reflection [J]. Nature Nanotechnology, 2020, 15(1): 67–72. |
| [19] |
Guo R, Necada M, Hakala T K, et al. Lasing at K Points of a honeycomb plasmonic lattice [J]. Physical Review Letters, 2019, 122(1): 1–6. |
| [20] |
Wu J S, Apalkov V, Stockman M I. Topological spaser [J]. Physical Review Letters, 2020, 124: 1–6. |
| [21] |
Zeng Y Q, Chattopadhyay U, Zhu B F, et al. Electrically pumped topological laser with valley edge modes [J]. Nature, 2020, 578: 246–250. |
| [22] |
中国科学院武汉文献情报中心, 中国激光杂志社, 中国光学学 会. 中国激光产业发展报告2019 [R]. 武汉: 中国科学院武汉文 献情报中心, 中国激光杂志社, 中国光学学会, 2019. Wuhan Library, Chinese Academy of Sciences, Chinese Jouranl of Lasers, the Chinese Optical Society. Annual report on Chinese laser industry refined edition 2019 [R]. Wuhan: Wuhan Library, Chinese Academy of Sciences, Chinese Jouranl of Lasers, the Chinese Optical Society, 2019. |
中国工程院咨询项目“我国激光技术与应用2035 发展战略研究”(2018-XZ-27)()
/
| 〈 |
|
〉 |