工业环境下信息通信类技术赋能智能制造研究

李伯虎 , 柴旭东 , 刘阳 , 李潭 , 林廷宇 , 韦达茵 , 李艳东

中国工程科学 ›› 2022, Vol. 24 ›› Issue (2) : 75 -85.

PDF (758KB)
中国工程科学 ›› 2022, Vol. 24 ›› Issue (2) : 75 -85. DOI: 10.15302/J-SSCAE-2022.02.007
新时期推进制造强国建设若干重大问题研究

工业环境下信息通信类技术赋能智能制造研究

作者信息 +

Intelligent Manufacturing Enabled by Information and Communication Technology in Industrial Environment

Author information +
文章历史 +
PDF (775K)

摘要

新智能制造系统作为信息通信技术与工业技术深度融合的产物,为正在快速展开的新一轮工业革命提供了关键支撑;信息通信类技术的快速演进,赋予了新智能制造加速发展的潜力。本文梳理并提出了新智能制造系统的技术体系构成,重点从 1 类核心技术(工业互联网系统)、 4 类基础技术(工业大数据、人工智能(AI)、第五代移动通信(5G)、建模仿真/数字孪生)角度阐述了信息通信类赋能技术子体系的内涵及特征;在此基础上系统辨识了信息通信类技术赋能智能制造的纵向应用、横向应用、端到端应用等场景。研究认为,可重点设置先进网络技术、协同计算技术、工业知识推理技术等的科技项目,实施以 5G 应用与网络协同的研发与产业化、面向新一代 AI 技术的智能产品及智能互联产品的研发与产业化、自主可控建模仿真/数字孪生工具集及系统的研发与产业化为代表的产业发展内容,以基于 5G + 工业虚拟现实的工业设计、AI物联网工业平台、基于建模仿真 / 数字孪生技术的工业产品智能设计为代表的应用示范内容。为此建议,完善高效协同的新智能制造政策推进工作机制,加快建设互联互通标准群,以“产学研”协同方式推动产业链供应链发展,增强智能制造领域产业与教育深度融合。

Abstract

The new intelligent manufacturing system integrates information and communication technologies (ICTs) with industrial technologies and supports the rapidly unfolding new round of industrial revolution. The rapid evolution of ICTs gives intelligent manufacturing the potential for accelerated development. This paper proposes a technical system for the new intelligent manufacturing system and elaborates the connotation and characteristics of a technical subsystem regarding ICTs from the perspective of industrial Internet system technologies and four basic technologies, namely, industrial big data, artificial intelligence (AI), fifth-generation mobile communication (5G), and modeling simulation/digital twin. Subsequently, we present the vertical, horizontal, and end-to-end application scenarios of intelligent manufacturing enabled by ICTs, and propose several suggestions for promoting the new intelligent manufacturing system through ICTs. First, special science and technology projects should be established focusing on advanced networks, collaborative computing, and industrial knowledge reasoning. Second, Industrial development should focus on the R&D and industrialization of the following technologies: 5G application, network collaboration, intelligent and intelligently connected products based on new-generation AI technology, and domestication of modeling simulation/digital twin tool sets and systems. Third, Application demonstration should be conducted regarding industrial design based on 5G Plus industrial virtual reality, industrial platforms for AI Internet of Things, and intelligent design of industrial products based on modeling simulation/digital twin technology. Meanwhile, it is necessary to improve the efficient and collaborative working mechanism for promoting new intelligent manufacturing policies, accelerate the construction of interconnection standard groups, promote the industrial chain and supply chain through industry–university–research collaboration, and enhance the deep integration of industry and education in intelligent manufacturing.

关键词

信息通信 / 智能制造 / 赋能技术 / 数字孪生

Key words

信息通信 / 智能制造 / 赋能技术 / 数字孪生 / information and communication / intelligent manufacturing / enabling technology / digital twin

引用本文

引用格式 ▾
李伯虎,柴旭东,刘阳,李潭,林廷宇,韦达茵,李艳东. 工业环境下信息通信类技术赋能智能制造研究[J]. 中国工程科学, 2022, 24(2): 75-85 DOI:10.15302/J-SSCAE-2022.02.007

登录浏览全文

4963

注册一个新账户 忘记密码

一、前言

以科技革命与产业革命为主要内容的新一轮工业革命已在全球快速展开。我国正步入“智能+” 时代,面临着复杂的国际 / 国内新形势和新征程,按照“创新、协调、绿色、开放、共享”的新发展理念,构建“以国内大循环为主体、国内国际双循环相互促进”的新发展格局 [1]。制造业是国民经济的主体,其发展应与新时代、新形势、新征程相适应和相匹配。当前,我国制造业正在转入高质量发展阶段,处于数字化转型及智能化升级的攻坚期。智能制造作为制造业高质量发展的主攻方向,对于加快发展现代产业体系、巩固壮大实体经济根基、构建新发展格局、建设数字中国具有重大意义。

“十三五”时期以来,国家积极推行智能制造试点示范应用、智能制造标准体系建设,显著提升了我国制造数字化、网络化、智能化水平,主要表现在:①制造业大国地位进一步巩固,制造业规模已连续多年位居世界第一,一批高端品牌走向世界;②重点领域创新取得重大突破,如重大装备制造能力实现跨越式发展,航空航天领域重大工程顺利实施;③产业结构加快升级,高技术制造业和装备制造业引领带动作用显著增强,如制造业数字化转型全面提速,在诸多领域形成先进制造业集群;④制造业企业实力显著增强,专业化水平持续提升,企业创新主体作用显著增强,培育发展出一批综合实力较强的领军企业,具有一定行业和区域影响力的工业互联网平台超过 100 家;⑤信息通信业实现新的跨越,第五代移动通信(5G)、工业互联网等新技术与制造业加速融合,数字工厂等新场景、新模式、新业态蓬勃发展,工业互联网平台助力形成网络化协同、智能化生产、服务化延伸、数字化管理等智能制造新模式。

在新的时期、新的形势下,新智能制造系统概念 [2~4] 应运而生,即以新一代人工智能(AI)技术为引领,涵盖新制造产品 / 能力 / 资源体系、新网络 / 感知体系、新平台体系、新标准安全体系、新应用体系、新用户体系等复杂系统。需要注意到,构建新智能制造系统不是简单的技术改造问题,而是一项战略性的系统工程,需要建立和运行“技术、产业、应用、人才、政策、保障体系一体化”创新格局 [5,6];而赋能技术正成为新智能制造系统实现数字化转型和智能化升级的重要支撑。从技术实现的角度看,智能制造赋能技术是实现新智能制造系统技术群的重要组成部分,主要有新制造科学技术、新信息通信技术、新智能科学技术、新制造应用领域专业技术等。

本文重点探讨工业环境下信息通信类技术赋能智能制造课题,因而涉及的智能制造赋能技术仅限于部分典型的信息通信类技术,如 5G、工业大数据、工业互联网系统、AI、建模仿真 / 数字孪生等类别。针对于此,梳理并分析工业环境下信息通信类赋能技术的内涵及发展态势,总结并提炼信息通信类技术赋能智能制造的纵向、横向、端到端等典型应用场景,进而提出科技项目、产业发展、应用示范等方面的发展建议,以期为新智能制造系统深化研究提供基础参考。

二、新智能制造系统的技术体系

在新智能制造系统中,新制造产品 / 能力 / 资源体系提供制造全系统与全生命周期活动中共享及服务的产品、能力、资源;新网络 / 感知体系实现工业全系统、全产业链、全价值链泛在深度互联与感知;新平台体系是提供工业信息物理融合与智能化服务的核心载体,实现制造产品、能力、资源、接入网络、感知系统的虚拟化和服务化;新标准安全体系是工业资源 / 能力 / 产品集成优化与全系统应用安全可信的保障;新应用体系是面向行业、领域、场景的各类工业应用;新用户体系是由服务提供者、服务运营者、服务使用者组成的人 / 组织体系。

新智能制造系统具有“六新”特征。①新技术,依托数字化、网络化、云化、智能化技术新手段,构成以用户为中心,统一经营,涵盖资源、产品、能力的新智能制造的服务云(网);用户通过新智能终端、新智能制造服务平台即可按需获取新智能制造资源、产品、能力服务,进而优质高效地完成制造全生命周期的各类活动。②新模式,即以用户(政府、企业、个人)为中心,人、机、物、环境、信息优化融合,“数字化、物联化、服务化(云化)、协同化、定制化、柔性化、绿色化、智能化”的协同互联智能制造新模式。③新业态,体现为万物智联、智能引领、数 / 模驱动、共享服务、跨界融合、万众创新。④新特征,针对新制造全系统、全生命周期活动(产业链)中的人、机、物、环境、信息,自主智能地进行感知、互联、协同、学习、分析、认知、决策、控制、执行等活动。⑤新内容,促使制造全系统及全生命周期活动中的人、技术 / 设备、管理、数据、材料、资金等要素,人、技术、管理、数据、物、资金等流动的新集成优化。⑥新目标,支持新智能制造系统数字化转型与智能化升级,实现制造产品和服务用户的高效、优质、节省、绿色、柔性,提高企业市场竞争能力。

新智能制造系统的架构,适用于纵向范围、横向范围(全产业链)、端到端的集成及优化;在反映新系统主要特征的同时,突出了边 / 云 / 端协同新架构、新信息通信技术与制造技术深度融合、感知 / 接入 / 通信网络的虚拟化及服务化、工业机理模型驱动、云原生工业应用程序(APP)开发环境等系统性创新。相应的技术体系(见图 1)以新一代 AI 技术为引领,细分为整体架构、赋能技术、安全技术、标准技术、工业软件等子体系。

图 2 信息通信类技术赋能智能制造的应用场景

(一)工业互联网系统技术赋能智能制造的纵向应用场景

1. 传感器技术赋能智能制造

传感器技术可赋能工业设备控制,如在数控机床上,温度传感器用来检测加工过程中因电机旋转、部件移动、切削等造成的温差,为数控系统实施温度补偿提供输入条件。传感器技术可赋能加工过程优化,如光电式带材跑偏检测器用来检测带型材料在加工过程中偏离正确位置的大小及方向,为印染、送纸、胶片、磁带等生产过程中的纠偏控制电路提供关键信号。传感器技术赋能设备健康监控,如霍尔传感器对刀具磨损的监控可敏感到刀具磨损诱发的机床主轴电动机负荷、电流、电压变化以及随之出现的功率改变,为数控系统提供及时的报警信号。

2. 自动控制技术赋能智能制造

一是 PLC 控制系统,可为多个自动化设备提供安全、可靠的控制方案。二是 DCS 控制系统,是以微处理器为基础,采用控制功能分散、显示操作集中、兼顾分而自治与综合协调设计原则的分布式计算机控制系统,也是控制技术、计算机技术、通信技术、图形显示相结合的产物。三是工业 PC 控制系统,作为基础性、分布式的工业自动化控制,有替代 PLC、DCS 控制系统的趋势。在工业以太网、先进控制理论的推动下,自动控制技术在智能制造领域的应用正朝着现场总线控制系统方向扩展和延伸。

3. 物联网 / CPS 技术赋能智能制造

物联网技术赋能主要指:在工业物联网技术下的工业生产,可对工业生产现场的大量数据进行采集和挖掘,找出短板以针对性地优化生产工艺;基于物联网技术对工业生产原材料、成品等物件的采购、销售、库存等进行实时监控及分析,为优化企业供应链管理提供支撑。将工业生产环保设备接入工业物联网,对污染治理环节的关键性指标进行实时监控及分析,为企业生产能耗及环保管控提供依据。基于工业物联网收集采购、生产、销售、售后等环节的人员和设备数据,为企业精准化决策提供数据支撑。

CPS 技术应用涉及设备管理、柔性生产、质量管控、运行维护、供应链协同等多类制造场景。制造企业依托平台将行业原理、基础工艺、业务流程、专家经验等共性技术进行知识代码化、组件化、模型化,以数字化模型的形式积累并按需共享。在高端装备制造业,典型场景有基于模型定义的设计研发、生产过程复杂问题 AI 决策、面向工业设备的故障预测与健康管理。

4. 工业互联网技术赋能智能制造

在协同制造方面,制造企业借助互联网平台的双边连接作用,打破行业壁垒及行业信息不对称,实现制造业闲置设备、技术、人才的供求合理化与匹配高效化。在个性化定制方面,企业基于工业互联网平台,加速将碎片化、通俗化的需求信息转化为标准化、可执行的工艺语言,驱动研发、生产、运维等部门协调配置制造资源,从而敏捷响应用户的个性化需求;开展智慧化营销、交互式设计、可视化生产、精准化服务,实现制造资源与用户需求全方位、全生命周期精准对接。在供应链优化方面,企业依托工业互联网平台整合上、下游资源,建立物流、信息流、资金流协同一体的运作体系;提供面向客户的库存管理、零部件管理、实时补货、物流配送等服务,实时响应客户交付需求。在远程运维服务方面,依托工业互联网平台对产品全生命周期数据进行采集,分析运维需求,定制服务进程,动态调配人员、设备,实现服务能力跨部门、跨企业的调度与协同。

5. 云计算技术赋能智能制造

制造全系统、全生命周期业务“云化”,通过云计算实现数据互通、信息共享、流程协同;运用云计算中心的大规模处理能力来实施学习、分析、认知、决策,进而支持业务优化。借助云计算实现广义的共享与协同,包括智能“软”制造资源(制造过程中的各种模型、(大)数据、软件、信息、知识等),智能“硬”制造资源(机床、机器人、加工中心、计算设备、仿真设备、实(试)验设备、检测设备、计量设备等大制造全生命周期过程中涉及的智能制造设施及材料、能源),智能制造能力(制造过程相关的论证、设计、仿真、生产、实(试)验、管理、销售、(产品)运营、(产品)维修、集成等),智能制造互联产品(数字化、网络化、智能化的新型制造互联产品,如通过新互联网络接入的智能运输车辆、工程机械)。

6. 边缘计算技术赋能智能制造

边缘计算与云计算协同处理工业云环境中的计算任务,创造云与网络边缘侧融合进行数据分析和计算的新模式。当前的云计算模式难以对工业生产过程中的海量数据进行实时分析,而在靠近物、数据源头的网络边缘侧就近提供边缘智能服务,可满足工业制造对敏捷联接、实时业务、数据优化、应用智能、安全与隐私保护等需求。

7. 高性能计算技术赋能智能制造

高性能计算与云计算、物联网、大数据、仿真等新兴技术结合,构建高性能云平台,将高性能资源虚拟化、服务化,构成高性能服务云池,进行协调优化的管理和经营。通过网络、终端及时获取高性能计算资源与服务,满足工业制造中的各类高性能计算需求(如建模、仿真、海量数据处理)。

8. 区块链技术赋能智能制造

供应链可视化、分布式生产、工业物流运输管理、工业维修工单管理是典型应用场景,还可围绕工业企业的供应链金融、工业设备产品租赁、工业产品设备二手交易、工业品回收等领域场景提供安全保障。基于区块链的智能制造数据平台,通过引入区块链分布式系统相关的可信、安全技术,构建去中心化的数据平台,使制造企业及其上、下游企业之间的设计、生产、物流等环节信息上链,打破企业之间的“数据孤岛”现象,支持工厂、企业各环节之间建立良好的数据协作,制造行业实现跨平台安全共享数据。

9. 系统安全技术赋能智能制造

相关应用处于工业企业、平台企业、安全企业、互联网企业、硬件企业多方共建状态。①龙头工业企业、大型智能制造公司面向工业转型发展需求,构建工业互联网平台并同步实施安全加固;从综合安全防护的角度出发,在平台各层次及数据方面部署相应安全防护措施。②大型制造企业、互联网企业依托自身特色打造工业互联网平台,孵化独立运营的平台服务,向其他企业输出具备一定安全能力的工业互联网平台。③安全企业利用自身积累的安全经验,为工业互联网平台提供安全解决方案;除了资产测绘、杀毒软件、防火墙、入侵检测、流量审计、安全监测等传统安全功能外,还通过软件即服务模式输出安全能力,为工业互联网平台提供技术支撑。④互联网企业依托系统、软件专精优势,为工业互联网平台提供安全的操作系统、虚拟化软件、数据库、大数据分析模型等。⑤硬件企业研发集成安全能力的硬件设备,如工业控制设备、安全路由、安全网关、安全边缘节点、可信服务器,为工业互联网平台提供基于硬件的安全防护能力。

(二)4 类基础技术赋能智能制造的应用场景

1. 工业大数据、AI 技术赋能智能制造的横向应用场景

工业大数据技术赋能智能制造的横向应用场景,主要涉及五方面。一是基于工业大数据的智能化设计。整合产品生命周期设计中各个环节所需知识资源,运用大数据相关技术将之集成至各种设计过程,以高度有序的方式展示产品生命周期大数据与设计之间的关系,形成产品设计知识,提高研发效率和质量,支持协同设计。二是基于工业大数据的智能化生产。采集并汇聚设备运行、工艺参数、质量检测、物料配送、进度管理等生产现场数据,利用大数据技术分析并应用至制造工艺、生产流程、质量管理、设备维护、能耗管理等具体场景应用,实现生产过程的优化。三是基于工业大数据的网络化协同制造,体现在协同研发与制造、供应链管理体系优化、制造能力资源优化等方面。四是基于工业大数据的智能化服务。工业大数据与新一代技术融合应用,赋予市场、销售、运营维护等产品全生命周期服务全新的内容,从大规模流水线生产转向规模化定制生产,从生产型制造向服务型制造转变。五是基于工业大数据的个性化定制。工业大数据与大规模个性化定制模式相结合,支持工业产品开发个性化、设备管理个性化、企业管理个性化、人员管理个性化、垂直行业个性化,形成工业价值创造新模式。

AI 技术赋能智能制造的横向应用场景,主要涉及三方面。一是 AI 赋能产品 / 产线优化及智能化设计。采用 AI 技术进行产品 / 产线建模,利用 AR/VR 等技术实现虚拟模型与物理模型的数据融合,应用仿真优化技术开展产品 / 产线的闭环迭代优化,最终支撑制造系统产品 / 产线的仿真、分析和优化。二是 AI 视觉赋能智能监控与检测。面向生产制造过程中的数据智能化分析需求,创建数据驱动的工业机理模型,智能化处理工业大数据,进行设备监控、巡检、突发性故障排查、过程质量检测等。三是 AI 赋能智能化管控。通过大数据、知识图谱等支持企业从销售、采购等环节来优化供应链运行效率,最终实现所有设备的云端可视化智能管控,构建产品全生命周期和供应链全要素协同的智慧产业链应用模式。四是大数据智能赋能远程运维服务。利用大数据和 AI 技术构建设备管理、运行工况监测、故障诊断等算法模型,支持实现基于云的智能监控、故障诊断、远程运维等智能服务。

2. 5G、建模仿真 / 数字孪生技术赋能智能制造的端到端应用场景

5G 技术赋能智能制造的端到端应用场景,主要涉及三方面。一是 5G 赋能云化智能设备,以云化工业机器人为典型,从位于云端的控制平台出发,利用 AI、大数据等技术控制本地机器人执行任务;实现机器人的远程实时控制并加强机器人之间的协作能力,使机器人更加敏捷、安全地与人协同。二是 5G 赋能工业 VR,主要应用在虚拟装配、虚拟培训、虚拟展厅等场景;VR 虚拟装配可在设计接口、部件外观等方面优化产品实际装配能效,VR 虚拟培训场景表达更直观、信息传递更丰富,VR 虚拟展厅让观展者具有“身临现场”的远程体验。三是 5G 赋能实时数据采集与监控,促进工厂内海量数据实时上传,支持超高清视频监控和机器视觉识别,提升工厂设备远程运维能力。

建模仿真 / 数字孪生技术赋能智能制造的端到端应用场景。围绕论证、研究、分析、设计、生产、管理、试验、运行、训练、评估、销售、服务、销毁等全生命周期活动,基于模型与数据驱动,将人、物理空间、信息 / 赛博空间连接为一体,使人、机、物、环境、信息等要素能自主智能地感知、学习、分析、决策和执行。基于建模仿真 / 数字孪生的产品多学科仿真研发,基于建模仿真 / 数字孪生的产品并行设计,基于数字样机的产品远程运维是主要的细分应用场景。

五、信息通信类技术赋能智能制造的发展建议

(一)技术性建议

在技术研究方面,建议重点发展以下技术:5G 先进网络、协同计算、跨链知识构建等技术;工业大数据机理模型建模、知识推理等高端新型工业大数据软件核心技术;工业互联网系统核心技术,如物联网创新技术体系、CPS 核心支撑技术、云论证 / 云设计 / 云仿真 / 云生产加工 / 云试验 / 云经营管理 / 云服务融合应用技术、高性能仿真计算机技术、工业区块链核心架构技术、工业智能传感器技术; AI 与工业技术深度融合应用的工业智能技术;适用于数字化、网络化、云化、智能化的新智能制造系统的建模仿真 / 数字孪生核心技术。

在产业发展方面,建议重点实施以下内容:5G 应用与网络协同的研发与产业化;新型工业大数据平台、工业供应链数据协同共享平台研发与产业化;面向多场景的工业资源 / 能力 / 产品智能专件及 APP、AI 物联网“端管云”一体化平台、面向工业 CPS 的工业软件、边缘制造 / 高性能仿真计算机工具集(硬件 / 软件)、云数据中心运营服务、自主可控的区块链公共服务平台、工业协同安全平台、云化 PLC/DCS、智能微系统平台的研发与产业化;面向新一代 AI 技术的智能产品及智能互联产品的研发与产业化;自主可控建模仿真 / 数字孪生工具集及系统的产品研发与产业化。

在应用示范方面,建议重点实施以下内容:基于 5G + 工业 VR 的工业设计应用示范;企业互联互通的数据融合系统网络应用示范;行业公共服务平台应用示范、AI 物联网工业平台应用示范、面向典型行业的 CPS 基础服务应用示范、云边协同的工业边缘智能控制应用示范、面向 CPS 工程的智能高性能仿真云、基于区块链的工控数据安全采集应用示范;云原生 AI 平台的云边端协同制造云应用示范;基于建模仿真 / 数字孪生技术的工业产品智能设计应用示范。

(二)策略性建议

完善高效协同的新智能制造政策推进工作机制,构建 5G、大数据、工业互联网、AI、数字孪生等新信息通信技术产业的融合发展模式,为新智能制造提供坚实基础支撑。形成技术创新市场导向机制,突出企业的创新主体地位,促进各类创新要素向企业集聚,形成以企业为主体、市场为导向、 “产学研用”结合的技术创新体系,着力突破关键核心技术和系统集成技术。

加快新智能制造相关的基础共性、关键技术标准制定 / 修订,涉及体系建设、融合应用、产业生态、行业监管,推动形成国家标准、行业标准、团体标准、企业标准相互协调、互为补充的标准群。注重标准贯彻执行效果,支持工业企业开展标准化智能车间 / 工厂建设,增强新智能制造数据与安全、技术评价、工业标识解析等标准的深度融合。积极参与国际标准化工作,推动技术就绪度高的国家标准与国际标准同步发展。

支持行业龙头企业联合高校,科研院所,上、下游企业,共建国家产业创新中心;有条件的企业联合转制科研院所,组建行业研究院并提供公益性共性技术服务。打造新型共性技术平台,解决工业环境下跨行业、跨领域关键共性技术问题。发挥大企业引领支撑作用,支持创新型“中小微”企业成长为创新发源地,推动产业链上、中、下游,大、中、小企业融通创新。加强工业数据中心、智能计算中心等算力基础设施建设,支撑 AI 新技术应用。推动大型企业、工业园区建立各具特色的工业互联网平台,覆盖内部资源整合、产品全生命周期管理、产业链供应链协同、中小企业服务等方向,支持实现智能制造全要素、全产业链数据的有效集成与管理。

增强智能制造领域产业与教育深度融合。吸引信息通信技术、智能制造领域相关企业深度参与专业教学标准及人才培养方案制定、教学资源开发及课程实施等,建立顺畅的校企合作机制。优化创新数字人才培养体系,深入实施专业技术人才知识更新工程,围绕 5G、工业互联网、大数据、AI 等产业重点方向组织实施高级研修项目,规模化培养紧缺专业技术人才。实施全球化数字人才项目,契合相关领域高端人才需求,吸引各类人才从事新智能制造领域的基础与应用研究。

参考文献

[1]

新华网. 中华人民共和国国民经济和社会发展第十四个五年规 划和2035年远景目标纲要 [EB/OL]. (2021-03-13)[2022-02-15]. http://www.xinhuanet.com/2021-03/13/c_1127205564.htm. Xinhua Net. Outline of the 14th Five-Year Plan for national economic and social development of the People’s Republic of China and the vision for 2035 [EB/OL]. (2021-03-13)[2022-02-15]. http://www. xinhuanet.com/2021-03/13/c_1127205564.htm.

[2]

李伯虎, 柴旭东, 张霖, 新一代人工智能技术引领下加快发 展智能制造技术、产业与应用 [J]. 中国工程科学, 2018, 20(4): 73–78. Li B H, Chai X D, Zhang L, et al. Accelerate the development of intelligent manufacturing technologies, industries, and application under the guidance of a new-generation of artificial intelligence technology [J]. Strategic Study of CAE, 2018, 20(4): 73–78.

[3]

李伯虎, 柴旭东, 侯宝存, 云制造系统3.0——一种“智能+” 时代的新智能制造系统 [J]. 计算机集成制造系统, 2019, 25(12): 2997–3012. Li B H, Chai X D, Hou B C, et al. Cloud manufacturing system3.0—A new intelligent manufacturing system in the era of “Intelligence +” [J]. Computer Integrated Manufacturing Systems, 2019, 25(12): 2997–3012.

[4]

李伯虎, 柴旭东, 侯宝存, 一种新型工业互联网——智慧工 业互联网 [J]. 中国工业和信息化, 2021 (6): 54–61. Li B H, Chai X D, Hou B C, et al. A new type of industrial Internet – Intelligent industrial Internet [J]. China Industry & Information Technology, 2021 (6): 54–61.

[5]

中华人民共和国工业和信息化部. 我国“十四五”信息化和工 业化深度融合发展规划 [EB/OL]. (2021-11-17)[2021-12-31]. https://www.miit.gov.cn/jgsj/xxjsfzs/zlgh/art/2021/art_adc18bc1dd 4946838828ea129afc433e.html. Ministry of Industry and Information Technology of the People’s Republic of China. China’s 14th Five-Year Plan for the deep integration of informatization and industrialization [EB/OL]. (2021-11-17)[2021-12-31]. https://www.miit.gov.cn/jgsj/xxjsfzs/ zlgh/art/2021/art_adc18bc1dd4946838828ea129afc433e.html.

[6]

人民网. 中央经济工作会议在北京举行 [EB/OL]. (2021-12-11) [2022-02-15]. http://cpc.people.com.cn/n1/2021/1211/c64094- 32305295.html. People’s Daily Online. The annual Central Economic Work Conference was held in Beijing [EB/OL]. (2021-12-11)[2022-02- 15]. http://cpc.people.com.cn/n1/2021/1211/c64094-32305295. html.

[7]

中国人民共和国工业和信息化部. 工业互联网百科词条 [EB/ OL]. (2021-7-29)[2021-12-31]. https://www.miit.gov.cn/jgsj/xgj/ gzdt/art/2021/art_3cffba8810be4ec68bc3d1051a0c0453.html. Ministry of Industry and Information Technology of the People’s Republic of China. Industrial Internet encyclopedia entry[EB/OL]. (2021-7-29)[2021-12-31]. https://www.miit.gov.cn/jgsj/xgj/gzdt/ art/2021/art_3cffba8810be4ec68bc3d1051a0c0453.html.

[8]

工业互联网产业联盟. 工业互联网平台白皮书(2017) [EB/ OL]. (2017-12-01)[2021-12-31]. http://www.aii-alliance.org/index/ c145/n94.html. Alliance of Industrial Internet. Industrial Internet platform white paper(2017). [EB/OL]. (2017-12-01)[2021-12-31]. http://www.aiialliance.org/index/c145/n94.html.

[9]

Sengupta J, Ruj S, Bit S D. A comprehensive survey on attacks, security issues and blockchain solutions for IoT and IIoT [J]. Journal of Network and Computer Applications, 2020, 149: 1–15.

[10]

中国电子技术标准化研究院, 中国信息物理系统发展论坛. 信 息物理系统白皮书(2017) [EB/OL]. (2017-03-02)[2021-12-31]. http://www.cesi.cn/201703/2251.html. China Electronics Standardization Institute, China Information Physics System Development Forum. Information physical systems white paper(2017) [EB/OL]. (2017-03-02)[2021-12-31]. http://www.cesi.cn/201703/2251.html.

[11]

中国电子技术标准化研究院, 中国信息物理系统发展论坛. 信 息物理系统建设指南(2020) [EB/OL]. (2020-08-28)[2021-12- 31]. http://www.cesi.cn/202008/6748.html. China Electronics Standardization Institute, China Information Physics System Development Forum. Guidelines for building information physical systems(2020) [EB/OL]. (2020-08-28)[2021- 12-31]. http://www.cesi.cn/202008/6748.html.

[12]

中华人民共和国工业和信息化部. 云计算白皮书(2012年) [EB/OL]. (2012-04-03)[2022-02-15]. http://www.caict.ac.cn/kxyj/ qwfb/bps/201804/P020151211378881360681.pdf. Ministry of Industry and Information Technology of the People’s Republic of China. Cloud computing white paper(2012) [EB/OL]. (2012-04-03)[2022-02-15]. http://www.caict.ac.cn/kxyj/qwfb/ bps/201804/P020151211378881360681.pdf.

[13]

高员, 黄晓昆, 李秀伟. 等保2.0时代云计算安全要求及测评实践 [J]. 信息安全研究, 2018, 4(11): 987–992. Gao Y, Huang X K, Li X W, et al. Cloud computing security requirements and measurement practices in the classified protection 2.0 era [J]. Journal of Information Security Research, 2018, 4(11): 987–992.

[14]

边缘计算产业联盟. 边缘计算产业联盟白皮书 [EB/OL]. (2016- 11-30)[2021-12-31]. http://www.ecconsortium.org/Lists/show/ id/32.html. Edge Computing Consortium. Edge Computing Industry Alliance white paper [EB/OL]. (2016-11-30)[2021-12-31]. http://www. ecconsortium.org/Lists/show/id/32.html.

[15]

中国信息通信研究院. 区块链白皮书(2018) [EB/OL]. (2018-09- 08)[2021-12-31]. http://www.caict.ac.cn/kxyj/qwfb/bps/201809/ t20180905_184515.htm. China Academy of Information and Communications. Blockchain white paper(2018) [EB/OL]. (2018-09-08)[2021-12-31]. http:// www.caict.ac.cn/kxyj/qwfb/bps/201809/t20180905_184515.htm.

[16]

中国信息通信院, 工业互联网产业联盟. 工业区块链应用指南 [EB/OL]. (2020-09-08)[2021-12-31]. https://mp.weixin.qq.com/s/ mrxXX_UIMsEs0tDeTJBcbA. China Academy of Information and Communications Technology, Alliance of Industrial Internet. Industrial blockchain application guide [EB/OL]. (2020-09-08)[2021-12-31]. https://mp.weixin. qq.com/s/mrxXX_UIMsEs0tDeTJBcbA.

[17]

维克托 • 迈尔–舍恩伯格, 肯尼思 • 库克耶. 大数据时代: 生活、 工作与思维的大变革 [M]. 周涛 译. 杭州: 浙江人民出版社, 2013. Mayer-Schönberger V, Cukier K. Big data: A revolution that will transform how we live, work and think [M]. Translated by Zhou T. Hangzhou: Zhejiang People’s Publishing House, 2013.

基金资助

中国工程院咨询项目“新时期智能制造若干重大问题研究” (2021-HZ-11)()

AI Summary AI Mindmap
PDF (758KB)

3818

访问

0

被引

详细

导航
相关文章

AI思维导图

/