新型储能金属钒资源需求预测与供应分析
陈仁凤 , 龙涛 , 陈其慎 , 张艳飞 , 邢佳韵 , 刘敏 , 王琨 , 任鑫 , 商铖红 , 王晓
中国工程科学 ›› 2024, Vol. 26 ›› Issue (3) : 74 -85.
新型储能金属钒资源需求预测与供应分析
New Energy-Storage Metal Vanadium Resources: Demand Prediction and Supply Analysis
随着全球太阳能、风能等新能源的快速发展,储能作为解决其发电间歇性等问题的必备设施,未来也将迎来爆发式增长。钒液流电池具有本征安全、全生命周期经济性好及环境友好等特点,且已具备产业化应用条件,在储能领域的重要性不断凸显。本文分析了未来钒液流电池的发展趋势,设置了高速发展、参考和低速发展3种情景,结合钒液流电池单位钒用量,预测了未来不同情景下储能领域钒资源需求趋势。研究发现,未来钒资源需求将快速增长,尤其是在高增长情景下,全球2040年钒资源需求将较2021年增长276~338倍;分析全球钒资源的供应情况,认为随着钒液流电池的迅速发展,未来钒资源将供不应求。针对以上情况,研究提出:一是提高钒液流电池的技术研发力度;二是加大钒矿的地质勘查力度,积极探索新的钒矿资源;三是创新钒钛磁铁矿的提钒方法和技术,提高钒资源利用效率;四是加大钒资源的回收利用;五是重视境外钒钛磁铁矿的布局与开发。
As new energy sources such as solar and wind energy develop rapidly, energy storage will usher in explosive growth owing to its ability to solve the problems of intermittent power generation. Vanadium redox flow battery has the characteristics of intrinsic safety, excellent lifecycle economical efficiency, and environmental friendliness, and is ready for industrial application; therefore, such battery becomes increasingly important in the field of energy storage. This study analyzes the development trend of the vanadium redox flow battery. Considering the unit vanadium consumption of the vanadium redox flow battery, it predicts the demand trend of vanadium resources in the energy storage field under three scenarios: high-speed, reference, and low-speed development. The demand for vanadium resources will increase rapidly in the future, especially under the high-growth scenario, and the global demand for vanadium resources in 2040 will increase by 276‒338 times compared with that in 2021. With the rapid development of vanadium redox flow batteries, vanadium resources will be in short supply in the future. In view of the above situations, countermeasures for ensuring the supply of vanadium resources are proposed: (1) promoting technological research regarding vanadium redox flow batteries; (2) strengthening the geological exploration of vanadium mines to explore new vanadium resources; (3) innovating the methods and technologies for extracting vanadium from vanadium-titanium magnetite to improve the utilization efficiency of vanadium resources; (4) increasing the recycling of vanadium resources; and (5) emphasizing the layout and development of overseas vanadium-titanium magnetite.
电化学储能 / 钒液流电池 / 钒资源 / 供应保障 / 需求预测
electrochemical energy storage / vanadium flow battery / vanadium resources / supply guarantee / demand forecasting
| [1] |
中华人民共和国国家发展和改革委员会. 关于印发"十四五"可再生能源发展规划的通知[EB/OL]. (2022-06-01)[2023-11-25]. https://www.ndrc.gov.cn/xwdt/tzgg/202206/t20220601_1326720.html. |
| [2] |
National Development and Reform Commission of the People's Republic of China. Notice on issuing the 14th Five Year Plan for the development of renewable energy [EB/OL]. (2022-06-01)[2023-11-25]. https://www.ndrc.gov.cn/xwdt/tzgg/202206/t20220601_1326720.html. |
| [3] |
IEA. World energy outlook 2023 [R]. Paris: IEA, 2023. |
| [4] |
孟祥飞, 庞秀岚, 崇锋, 等. 电化学储能在电网中的应用分析及展望 [J]. 储能科学与技术, 2019, 8(S1): 38‒42. |
| [5] |
Meng X F, Pang X L, Chong F, et al. Application analysis and prospect of electrochemical energy storage in power grid [J]. Energy Storage Science and Technology, 2019, 8(S1): 38‒42. |
| [6] |
赵天寿. 太阳能终将照亮人类未来 [J]. 中国石油企业, 2022 (6): 13, 127. |
| [7] |
Zhao T S. ISolar energy will eventually illuminate the future of mankind [J]. China Petroleum Enterprise, 2022 (6): 13, 127. |
| [8] |
陈洪明. 电力储能技术现状及发展趋势研究 [J]. 中文科技期刊数据库(引文版)工程技术, 2022 (12): 188‒190. |
| [9] |
Chen H M. Research on the present situation and development trend of electric energy storage technology [J]. Chinese Sci-tech Journal Database (Citation Edition) Engineering Technology, 2022 (12): 188‒190. |
| [10] |
裴春兴, 王蓝, 王聪聪, 等. 电力系统储能应用场景研究综述 [J]. 电气应用, 2022, 41(9): 1‒8. |
| [11] |
Pei C X, Wang L, Wang C C, et al. Survey of application scenarios of energy storage in power system [J]. Electrotechnical Application, 2022, 41(9): 1‒8. |
| [12] |
张文建, 崔青汝, 李志强, 等. 电化学储能在发电侧的应用 [J]. 储能科学与技术, 2020, 9(1): 287‒295. |
| [13] |
Zhang W J, Cui Q R, Li Z Q, et al. Application of electrochemical energy storage in power generation [J]. Energy Storage Science and Technology, 2020, 9(1): 287‒295. |
| [14] |
中华人民共和国国家发展和改革委员会. 国家发展改革委 国家能源局关于鼓励可再生能源发电企业自建或购买调峰能力增加并网规模的通知 [EB/OL]. (2021-08-10)[2024-02-18]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202108/t20210810_1293396.html?eqid=f12390200001e16800000002646dc89d. |
| [15] |
National Development and Reform Commission of the People's Republic of China. Notice of National Energy Administration and National Development and Reform Commission on encouraging renewable energy power generation enterprises to build or buy peak regulation capacity to increase the scale of grid connection [EB/OL]. (2021-08-10)[2024-02-18]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202108/t20210810_1293396.html?eqid=f12390200001e16800000002646dc89d. |
| [16] |
Li L C, Wang B W, Jiao K, et al. Comparative techno-economic analysis of large-scale renewable energy storage technologies [J]. Energy and AI, 2023, 14: 100282. |
| [17] |
张华民. 全钒液流电池的技术进展、不同储能时长系统的价格分析及展望 [J]. 储能科学与技术, 2022, 11(9): 2772‒2780. |
| [18] |
Zhang H M. Development, cost analysis considering various durations, and advancement of vanadium flow batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2772‒2780. |
| [19] |
牟俊, 肖艳, 毛柠. 浅析国内钒电池产业现状及发展趋势 [J]. 四川化工, 2023, 26(4): 4‒8, 20. |
| [20] |
Mou J, Xiao Y, Mao N. Analysis of the current situation and development trend of vanadium redox battery industry in China [J]. Sichuan Chemical Industry, 2023, 26(4): 4‒8, 20. |
| [21] |
缪平, 姚祯, Lemmon John, 等. 电池储能技术研究进展及展望 [J]. 储能科学与技术, 2020, 9(3): 670‒678. |
| [22] |
Miao P, Yao Z, John L, et al. Current situations and prospects of energy storage batteries [J]. Energy Storage Science and Technology, 2020, 9(3): 670‒678. |
| [23] |
赵天寿, 蒋浩然, 李文甲. 流体电池的化学工程科学问题 [J]. 中国科学基金, 2023, 37(2): 170‒177. |
| [24] |
Zhao T S, Jiang H R, Li W J. Chemical engineering scientific issue in flow cells [J]. Bulletin of National Natural Science Foundation of China, 2023, 37(2): 170‒177. |
| [25] |
朱厚军, 郎俊山. 全钒液流电池研究进展 [J]. 船电技术, 2012, 32(6): 5‒8. |
| [26] |
Zhu H J, Lang J S. Research progress of vanadium redox flow battery [J]. Marine Electric & Electronic Engineering, 2012, 32(6): 5‒8. |
| [27] |
魏甲明, 刘召波, 陈宋璇, 等. 全钒液流电池技术研究进展 [J]. 中国有色冶金, 2022, 51(3): 14‒21. |
| [28] |
Wei J M, Liu Z B, Chen S X, et al. Progress of research on full vanadium liquid flow battery technology [J]. China Nonferrous Metallurgy, 2022, 51(3): 14‒21. |
| [29] |
北京安泰科信息股份有限公司. 2022年有色金属市场发展报告——钒 [R]. 北京: 北京安泰科信息股份有限公司, 2022. |
| [30] |
Beijing Antaike Information Co., Ltd. Development report of nonferrous metals market in 2022—Vanadium [R]. Beijing: Beijing Antaike Information Co., Ltd., 2022. |
| [31] |
吴皓文, 王军, 龚迎莉, 等. 储能技术发展现状及应用前景分析 [J]. 电力学报, 2021, 36(5): 434‒443. |
| [32] |
Wu H W, Wang J, Gong Y L, et al. Development status and application prospect analysis of energy storage technology [J]. Journal of Electric Power, 2021, 36(5): 434‒443. |
| [33] |
梅简, 张杰, 刘双宇, 等. 电池储能技术发展现状 [J]. 浙江电力, 2020, 39(3): 75‒81. |
| [34] |
Mei J, Zhang J, Liu S Y, et al. Development status of battery energy storage technology [J]. Zhejiang Electric Power, 2020, 39(3): 75‒81. |
| [35] |
韦媚媚, 项定先. 储能技术应用与发展趋势 [J]. 工业安全与环保, 2023, 49(S1): 4‒12. |
| [36] |
Wei M M, Xiang D X. Application and development trend of energy storage technology [J]. Industrial Safety and Environmental Protection, 2023, 49(S1): 4‒12. |
| [37] |
徐泽宇. 高性能钒液流电池用电极的结构设计与制备 [D]. 合肥: 中国科学技术大学(博士学位论文), 2021. |
| [38] |
Xu Z Y. Structural design and fabrication of electrodes for high-performance vanadium flow batteries [D]. Hefei: University of Science and Technology of China (Doctoral dissertation), 2021. |
| [39] |
Choi C, Kim S, Kim R, et al. A review of vanadium electrolytes for vanadium redox flow batteries [J]. Renewable and Sustainable Energy Reviews, 2017, 69: 263‒274. |
| [40] |
Trovò A, Rugna M, Poli N, et al. Prospects for industrial vanadium flow batteries [J]. Ceramics International, 2023, 49(14): 24487‒24498. |
| [41] |
陈其慎, 张艳飞, 邢佳韵, 等. 矿产资源安全巨系统理论方法与实践 [J]. 中国工程科学, 2023, 25(6): 191‒201. |
| [42] |
Chen Q S, Zhang Y F, Xing J Y, et al. Theoretical method and practice of giant system for mineral resource security [J]. Strategic Study of CAE, 2023, 25(6): 191‒201. |
| [43] |
IEA. The role of critical world energy outlook special report minerals in clean energy transitions [EB/OL]. (2021-01-30)[2024-02-18]. https://iea.blob.core.windows.net/assets/ffd2a83b-8c30-4e9d-980a-52b6d9a86fdc/TheRoleofCriticalMineralsinCleanEnergyTransitions.pdf. |
| [44] |
Rystad Energy. New battery storage capacity to surpass 400 GW·h per year by 2030‒10 times current additions [EB/OL]. (2023-06-14) [2024-02-18]. https://www.rystadenergy.com/news/new-battery-storage-capacity-to-surpass-400-gwh-per-year-by-2030-10-times-current. |
| [45] |
Zhang Y, Weng Y W, Li H R, et al. Research on China's electricity market and photovoltaic and electrochemical energy storage industry [R]. Tianjin: 2023 8th Asia Conference on Power and Electrical Engineering (ACPEE), 2023. |
| [46] |
CRU. Battery demand for vanadium from vrfb to change vanadium market [EB/OL]. (2022-11-17)[2024-02-18]. https://www.crugroup.com/knowledge-and-insights/spotlights-blogs/blogs-2022/battery-demand-for-vanadium-from-vrfb-to-change-vanadium-market/. |
| [47] |
USGS. Vanadium statistics and information [EB/OL]. (2023-01-01)[2024-02-18]. https://pubs.usgs.gov/periodicals/mcs2023/mcs2023-vanadium.pdf. |
| [48] |
孙朝晖. 钒新技术及钒产业发展前景分析 [J]. 钢铁钒钛, 2012, 33(1): 1‒7. |
| [49] |
Sun Z H. Analysis on new vanadium technologies and prospects of vanadium industry [J]. Iron Steel Vanadium Titanium, 2012, 33(1): 1‒7. |
| [50] |
吴起鑫, 王建平, 车东, 等. 中国钒资源现状及可持续发展建议 [J]. 资源与产业, 2016, 18(3): 29‒33. |
| [51] |
Wu Q X, Wang J P, Che D, et al. Situation analysis and sustainable development suggestions of vanadium resources in China [J]. Resources & Industries, 2016, 18(3): 29‒33. |
| [52] |
Bai Z J, Zhong H, Hu R Z, et al. World-class Fe-Ti-V oxide deposits formed in feeder conduits by removing cotectic silicates [J]. Economic Geology, 2021, 116(3): 681‒691. |
| [53] |
European Commission. Report on critical raw materials and the circular economy [R]. Brussels: European Commission, 2018. |
| [54] |
杨立飞, 李增华, 欧阳永棚, 等. 钒矿床研究进展与展望 [J]. 沉积与特提斯地质, 2023, 43(1): 48‒58. |
| [55] |
Yang L F, Li Z H, Ouyang Y P, et al. Research progress and prospect of Vanadium deposits [J]. Sedimentary Geology and Tethyan Geology, 2023, 43(1): 48‒58. |
| [56] |
于宏东, 王丽娜, 曲景奎, 等. 中国典型钒钛磁铁矿的工艺矿物学特征与矿石价值 [J]. 东北大学学报(自然科学版), 2020, 41(2): 275‒281. |
| [57] |
Yu H D, Wang L N, Qu J K, et al. Process mineralogical characteristics and ore value of typical vanadium titanium magnetite in China [J]. Journal of Northeastern University (Natural Science), 2020, 41(2): 275‒281. |
| [58] |
杨鑫, 李奕东. 陕西某矿区低品位钒钛磁铁矿选矿试验研究 [J]. 中国金属通报, 2021 (2): 80‒82. |
| [59] |
Yang X, Li Y D. Experimental study on beneficiation of low-grade vanadium-titanium magnetite in a mining area in Shaanxi [J]. China Metal Bulletin, 2021 (2): 80‒82. |
| [60] |
杨耀辉, 惠博, 颜世强, 等. 全球钒钛磁铁矿资源概况与综合利用研究进展 [J]. 矿产综合利用, 2023 (4): 1‒11. |
| [61] |
Yang Y H, Hui B, Yan S Q, et al. Overview of global vanadium-titanium magnetite resources and comprehensive utilization [J]. Multipurpose Utilization of Mineral Resources, 2023 (4): 1‒11. |
| [62] |
汪镜亮. 国外钒钛磁铁矿的开发利用 [J]. 钒钛, 1993 (5): 1‒11. |
| [63] |
Wang J L. Development and utilization of foreign vanadium-titanium magnetite [J]. Vanadium-titanium, 1993 (5): 1‒11. |
| [64] |
赵国君, 赵祺彬, 兰井志, 等. 攀西地区钒钛磁铁矿资源特点及选矿新技术 [J]. 现代矿业, 2017, 33(7): 198‒200. |
| [65] |
Zhao G J, Zhao Q B, Lan J Z, et al. Characteristics of vanadium-titanium magnetite resources in Panxi Area and new beneficiation technology [J]. Modern Mining, 2017, 33(7): 198‒200. |
| [66] |
董岩峰, 简彦涛, 安灵慧. 承德地区钒钛磁铁矿成矿地质特征及找矿方向 [J]. 河北地质, 2014 (2): 20‒22. |
| [67] |
Dong Y F, Jian Y T, An L H. Metallogenic geological characteristics and prospecting direction of vanadium-titanium magnetite in Chengde area [J]. Hebei Geology, 2014 (2): 20‒22. |
| [68] |
赵海燕. 钒资源利用概况及我国钒市场需求分析 [J]. 矿产保护与利用, 2014 (2): 54‒58. |
| [69] |
Zhao H Y. Analysis of vanadium resources utilization and demand for vanadium in China [J]. Conservation and Utilization of Mineral Resources, 2014 (2): 54‒58. |
| [70] |
陈东辉. 钒产业2021年年度评价 [J]. 河北冶金, 2022 (12): 19‒30. |
| [71] |
Chen D H. Vanadium industry annual review of year 2021 [J]. Hebei Metallurgy, 2022 (12): 19‒30. |
| [72] |
VANITEC. Production & consumption 2011—2022 vanadium statistics [EB/OL]. (2023-01-30)[2024-02-18]. https://vanitec.org/vanadium/production-consumption. |
| [73] |
CBC金属网. 中国五氧化二钒(片状)走势图 [EB/OL]. (2024-03-27)[2024-03-29]. https://www.cbcie.com/db/price/11426.html. |
| [74] |
CBC Metal Mesh. Vanadium pentoxide (flake) trend chart of China [EB/OL]. (2024-03-27)[2024-03-29]. https://www.cbcie.com/db/price/11426.html. |
| [75] |
朱兆武, 张旭堃, 苏慧, 等. 全钒液流电池提高电解液浓度的研究与应用现状 [J]. 储能科学与技术, 2022, 11(11): 3439‒3446. |
| [76] |
Zhu Z W, Zhang X K, Su H, et al. Research and application of increasing electrolyte concentration in all vanadium redox flow battery [J]. Energy Storage Science and Technology, 2022, 11(11): 3439‒3446. |
| [77] |
刘涛, 葛灵, 张一敏. 全钒液流电池关键技术进展与发展趋势 [J]. 中国冶金, 2023, 33(4): 1‒8, 133. |
| [78] |
Liu T, Ge L, Zhang Y M. Advances and development trend in key technologies for all-vanadium redox flow battery [J]. China Metallurgy, 2023, 33(4): 1‒8, 133. |
中国工程院咨询项目“新能源矿产需求预测及安全评价技术”(2022-XY-82)
自然资源部中国地质调查局项目(DD20230040)
国家自然科学基金面上项目(42271281)
/
| 〈 |
|
〉 |