
航空工程科技未来20年发展战略研究
Development Strategy of Aeronautical Engineering Science and Technology in the Next 20 Years
在航空强国建设稳步推进的背景下,航空工程科技涉及专业领域多、技术风险高、资金投入大、发展周期长,需要制定长期、稳定的发展战略,才能集中力量突破航空工程科技的关键核心技术,实现航空工业的可持续发展。本文从民用飞机、航空动力、机载系统、空管系统4个方面出发,总结了世界航空工程科技发展态势,梳理了我国航空工程科技发展现状;识别出基础研究及技术储备、系统集成与产品体系研究、航空动力技术、机载系统研发及试验、航空维修能力、工业软件及基础元器件等方面的不足。在此基础上,论证提出了未来20年我国航空工程科技发展构想,着重阐述了超声速客机、高速旋翼机、新能源飞机、混合电推进系统、新一代空管技术、智能化客机技术、全复合材料航空发动机技术、复合材料智能修复技术等未来项目部署的重点方向。研究建议,将航空强国建设列入国家中长期战略规划,强化科技创新体系建设,加强跨领域协作,注重国际合作,精准支撑未来20年航空工程科技发展。
Aeronautical engineering science and technologies involve multiple disciplines, high technical risks, large capital investment, and long development cycles; therefore, a long-term, stable development strategy is needed to achieve breakthroughs regarding the key core technologies of aeronautical engineering science and technologies and to realize the sustainable development of the aeronautical industry. This study summarizes the global development trend and China's development status of aeronautical engineering science and technologies from four aspects: civil aircraft, aero engine, airborne system, and air traffic control system. It also identifies the development deficiencies in terms of basic research and technical reserves; system integration and product system research; aero engine technology; airborne system research, development, and testing; aeronautical maintenance capabilities; and industrial software and basic components. On this basis, a 20-year development vision for aeronautical engineering science and technologies in China is proposed, as well as key directions for future project deployment: supersonic passenger aircraft, high-speed rotorcraft, new energy aircraft, hybrid electric propulsion systems, next-generation air traffic control technologies, intelligent passenger aircraft, all-composite aero engines, and intelligent repair technologies for composite materials. Furthermore, the study suggests incorporating aeronautical power construction into national medium- and long-term strategic planning, strengthening the construction of a scientific and technological innovation system, enhancing interdisciplinary cooperation, and emphasizing international collaboration, thereby precisely supporting the development of aeronautical engineering science and technologies in the next 20 years..
航空工程科技 / 民用飞机 / 航空动力 / 机载系统 / 空管系统 / 智能化
aeronautical engineering science and technology / civil aircraft / aero engine / airborne system / air traffic control system / intelligent
[1] |
向巧, 黄劲东, 胡晓煜, 等. 航空动力强国发展战略研究 [J]. 中国工程科学, 2022, 24(2): 106‒112.
Xiang Q, Huang J D, Hu X Y, et al. Research on aero engine empower development strategy [J]. Strategic Study of CAE, 2022, 24(2): 106‒112.
|
[2] |
吴光辉, 马静华, 刘倩, 等. 民用航空运输业低碳化发展战略研究 [J]. 中国工程科学, 2023, 25(5): 165‒173.
Wu G H, Ma J H, Liu Q, et al. Low-carbon development of civil aviation industry [J]. Strategic Study of CAE, 2023, 25(5): 165‒173.
|
[3] |
詹承豫, 刘锴. 统筹发展和安全视角下中国航空应急救援体系建设战略研究——基于“情景 ‒ 任务 ‒ 能力”分析框架 [J]. 北京航空航天大学学报(社会科学版), 2024, 37(3): 68‒78.
Zhan C Y, Liu K. Strategic research on the construction of China's aviation emergency rescue system from the perspective of balancing development and security imperatives: Based on the analytical framework of “scenario‒task‒capability” [J]. Journal of Beijing University of Aeronautics and Astronautics (Social Sciences Edition), 2024, 37(3): 68‒78.
|
[4] |
唐长红, 王斌团. 2035年航空科技发展战略研究报告 [R]. 西安: 航空工业第一飞机设计研究院, 2016.
Tang C H, Wang B T. Research report of 2035 aeronautical science and technology development strategy [R]. Xi'an: The First Aircraft Design and Research Institute of AVIC, 2016.
|
[5] |
General Aviation Manufacturers Association. General aviation aircraft shipment report: 2022 year-end report [EB/OL]. (2023-03-10)[2024-06-15]. https://gama.aero/wp-content/uploads/2022ShipmentReport2023-03-10.pdf.
|
[6] |
CFM International. Test progress builds confidence in open fan engine architecture for the future of more sustainable air transport [EB/OL]. (2024-07-21)[2024-09-01]. https://www.cfmaeroengines.com/press-articles/test-progress-builds-confidence-in-open-fan-engine-architecture-for-the-future-of-more-sustainable-air-transport/.
|
[7] |
朱永文, 陈志杰, 蒲钒, 等. 空中交通智能化管理的科学与技术问题研究 [J]. 中国工程科学, 2023, 25(5): 174‒184.
Zhu Y W, Chen Z J, Pu F, et al. Scientific and technological issues for the intelligent management of air traffic [J]. Strategic Study of CAE, 2023, 25(5): 174‒184.
|
[8] |
新华网. AES100民用涡轴发动机获颁型号合格证 [EB/OL]. (2024-09-06)[2024-09-15]. http://www.xinhuanet.com/tech/20240906/4e0b1d452c6c48b2a1fa204877cf311d/c.html.
Xinhua Net. The AES100 civil turboshaft engine was awarded the type certificate [EB/OL]. (2024-09-06)[2024-09-15]. http://www.xinhuanet.com/tech/20240906/4e0b1d452c6c48b2a1fa204877cf311d/c.html.
|
[9] |
中国民用航空局. 2022中国民航绿色发展政策与行动 [EB/OL]. (2022-09-25)[2024-06-15]. https://www.gov.cn/xinwen/2022-09/25/content_5711791.htm.
Civil Aviation Administration of China. 2022 China civil aviation green development policy and action [EB/OL]. (2022-09-25)[2024-06-15]. https://www.gov.cn/xinwen/2022-09/25/content_5711791.htm.
|
[10] |
“十四五”民航绿色发展专项规划 [EB/OL]. (2022-01-15)[2024-06-15]. https://www.gov.cn/zhengce/zhengceku/2022-01/28/5670938/files/c22e012963ce458782eb9cb7fea7e3e3.pdf.
14th Five Year Plan for green development of civil aviation [EB/OL]. (2022-01-15)[2024-06-15]. https://www.gov.cn/zhengce/zhengceku/2022-01/28/5670938/files/c22e012963ce458782eb9cb7fea7e3e3.pdf.
|
[11] |
国家综合立体交通网规划纲要 [EB/OL]. (2021-02-24)[2024-06-15]. https://www.gov.cn/zhengce/2021-02/24/content_5588654.htm.
Outline of national comprehensive three-dimensional transportation network planning [EB/OL]. (2021-02-24)[2024-06-15]. https://www.gov.cn/zhengce/2021-02/24/content_5588654.htm.
|
[12] |
中国民用航空局. 智慧民航建设路线图 [EB/OL]. (2022-01-06)[2024-06-15]. https://www.gov.cn/xinwen/2022-01/21/5669771/files/f7402a57bcf349b0ae8d1224a0f35737.pdf.
Civil Aviation Administration of China. Roadmap for smart civil aviation construction [EB/OL]. (2022-01-06)[2024-06-15]. https://www.gov.cn/xinwen/2022-01/21/5669771/files/f7402a57bcf349b0ae8d1224a0f35737.pdf.
|
[13] |
Airbus global market forecast 2021—2040 [EB/OL]. (2021-11-13)[2024-06-15]. https://www.airbus.com/sites/g/files/jlcbta136/files/2021-11/Airbus%20Global%20Market%20Forecast%202021-2040.pdf.
|
[14] |
Airbus foresees demand for 39,000 new passenger & freighter aircraft by 2040 [EB/OL]. (2021-11-13)[2024-06-15]. https://www.airbus.com/en/newsroom/press-releases/2021-11-airbus-foresees-demand-for-39000-new-passenger-freighter-aircraft.
|
[15] |
Federal Aviation Administration. Environment & energy research & development portfolio overview [EB/OL]. (2021-09-15)[2024-06-15]. https://www.faa.gov/sites/faa.gov/files/2022-07/eeSC-Sep2021-Environment%26EnergyResearch%26DevelopmentPortfolioOverview.pdf.
|
[16] |
NASA low boom flight demonstration (LBFD) project [EB/OL]. [2024-06-15]. https://www.nasa.gov/directorates/armd/iasp/lbfd/.
|
[17] |
Forecast International. Rotorcraft forecast [EB/OL]. [2024-06-15]. https://www.forecastinternational.com/fistore/prod.cfm?FISSYS_RECNO=33&title=Rotorcraft-Forecast.
|
[18] |
宋薇薇, 杨凤田, 项松, 等. 氢能飞机研制进展及产业化前景分析 [J]. 中国工程科学, 2023, 25(5): 192‒201.
Song W W, Yang F T, Xiang S, et al. Development progress and industrialization prospect of hydrogen-powered aircraft [J]. Strategic Study of CAE, 2023, 25(5): 192‒201.
|
[19] |
Netherlands Aerospace Centre. A route to net zero European aviation [EB/OL]. (2021-11-02)[2024-06-15]. https://www.destination2050.eu/.
|
[20] |
Aerospace Industries Association. Horizon 2050: A flight plan for the future of sustainable aviation [R]. Arlington: Aerospace Industries Association, 2022.
|
[21] |
Investment scenario and roadmap for achieving aviation Green Deal objectives by 2050 [EB/OL]. (2022-09-01)[2024-06-15]. https://www.europarl.europa.eu/RegData/etudes/STUD/2022/699651/IPOL_STU(2022)699651_EN.pdf.
|
[22] |
Aerospace Technology Institute. Destination zero: The technology journey to 2050 [EB/OL]. [2024-06-15]. https://www.ati.org.uk/wp-content/uploads/2022/04/ATI-Tech-Strategy-2022-Destination-Zero.pdf.
|
[23] |
Aerospace Technology Institute. FlyZero technology roadmaps [EB/OL]. [2024-06-15]. https://www.ati.org.uk/reports/flyzero-technology-roadmaps/.
|
[24] |
Jet zero strategy: Delivering net zero aviation by 2050 [EB/OL]. [2024-06-15]. https://www.gov.uk/government/publications/jet-zero-strategy-delivering-net-zero-aviation-by-2050.
|
[25] |
向巧, 胡晓煜, 王曼, 等. 关于氢能航空动力发展的认识与思考 [J]. 航空发动机, 2024, 50(1): 1‒9.
Xiang Q, Hu X Y, Wang M, et al. Observations on the development of hydrogen-powered aircraft propulsion system [J]. Aeroengine, 2024, 50(1): 1‒9.
|
[26] |
Zamboni J, Vos R, Emeneth M, et al. A method for the conceptual design of hybrid electric aircraft [C]. San Diego: AIAA Scitech 2019 Forum, 2019.
|
[27] |
Rohacs J, Rohacs D. Conceptual design method adapted to electric/hybrid aircraft developments [J]. International Journal of Sustainable Aviation, 2019, 5(3): 175.
|
[28] |
Spierling T, Lents C. Parallel hybrid propulsion system for a regional turboprop: Conceptual design and benefits analysis [C]. Indianapolis: 2019 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS), 2019.
|
[29] |
Kojima T, Sugahara M, Shirouchi Y, et al. Gradationally controlled voltage inverter for more electric aircrafts [R]. Warrendale: SAE International, 2019.
|
/
〈 |
|
〉 |