数字健康技术在主动健康领域的应用进展与发展建议
Application of Digital Health Technologies in Proactive Health: Progress and Development Recommendations
数字健康技术的快速发展正推动健康管理模式从被动应对向主动管理转型。本文基于“主动感知、主动发现、主动应对”的主动健康理论框架,系统梳理了数字健康技术在主动健康领域的应用现状、发展面临的挑战以及应用趋势。研究表明,我国数字健康技术在主动健康领域技术应用面临感知精度瓶颈与数据安全挑战、算力局限与模型应用脱节、区域数字鸿沟及群体技术鸿沟等多重挑战。与此同时,数字健康技术在主动健康领域的应用趋势正朝着全生命周期管理、多维度数据融合、个性化服务需求升级、远程化场景拓展及生态化数据共享的方向演进,相应的潜在关键技术涵盖新一代生物传感、多模态数据融合分析、智能干预与数字疗法、远程医疗平台集成及隐私计算技术等领域。研究建议,完善政策支持体系、加强核心技术攻关、推进技术普惠与均衡发展、健全伦理规范与安全保障体系、推动应用场景拓展与产业生态融合等,以期为我国构建覆盖全生命周期的主动健康管理技术应用路径提供坚实的理论基础,进而为实现“健康中国”战略目标提供关键技术支撑、科学决策依据及全民健康促进的实践保障。
The rapid advancement of digital health technologies is facilitating a shift in health management from a reactive model to a proactive one. Grounded in the proactive health theoretical framework of "proactive sensing, proactive discovery, and proactive response," this study reviews the current application status, challenges, and future trends of digital health technologies in the field of proactive health. The study reveals that the application of these technologies in China faces multiple challenges, including limitations in sensing accuracy, data security risks, computational constraints, disconnections in model application, as well as regional digital divides and group-based technological disparities. Meanwhile, application trends are evolving toward full-lifecycle management, multi-dimensional data integration, upgraded demand for personalized services, expansion of remote scenarios, and ecological data sharing. Corresponding key technologies involve next-generation biosensing, multimodal data fusion and analysis, intelligent intervention and digital therapeutics, integrated remote medical platforms, and privacy-preserving computation technologies. To address these issues, this study proposes several targeted recommendations: improving the policy support system, strengthening core technology research, promoting equitable and inclusive technological development, establishing sound ethical standards and security mechanisms, and advancing the expansion of application scenarios along with industrial ecosystem integration. These recommendations aim to provide a solid theoretical foundation for constructing a technological pathway for full-lifecycle proactive health management in China, thereby offering key technical support, scientific decision-making basis, and practical safeguards for achieving the strategic goal of Healthy China and promoting population-wide health.
数字健康技术 / 主动健康管理 / 主动感知 / 主动发现 / 主动应对
digital health technology / proactive health management / proactive sensing / proactive discovery / proactive response
| [1] |
周良, 李晓光, 高翔, 基于主动健康指数的慢性病精准管理模式探索 [J]. 中国慢性病预防与控制, 2023, 31(4): 294‒299. |
| [2] |
Zhou L, Li X G, Gao X, et al. Exploration of precise health management model for chronic diseases based on the active health index [J]. Chinese Journal of Prevention and Control of Chronic Diseases, 2023, 31(4): 294‒299. |
| [3] |
康力, 王慧. 国内外数字公共卫生领域研究热点与前沿探究 [J]. 中国公共卫生, 2024, 40(9): 1103‒1109. |
| [4] |
Kang L, Wang H. Research hotspots and frontiers in digital public health research in China and abroad [J]. Chinese Journal of Public Health, 2024, 40(9): 1103‒1109. |
| [5] |
中共中央 国务院印发《“健康中国2030”规划纲要》 [EB/OL]. (2016-10-25)[2025-06-29]. https://www.gov.cn/zhengce/2016-10/25/content_5124174.htm. |
| [6] |
The Communist Party of China Central Committee and the State Council issued The outline of the “Healthy China 2030” plan [EB/OL]. (2016-10-25)[2025-06-29]. https://www.gov.cn/zhengce/2016-10/25/content_5124174.htm. |
| [7] |
国务院关于印发“十四五”数字经济发展规划的通知 [EB/OL]. (2021-12-12)[2025-06-29]. https://www.gov.cn/zhengce/zhengceku/2022-01/12/content_5667817.htm. |
| [8] |
Notice of the State Council on issuing the 14th Five-Year Plan for the development of the digital economy [EB/OL]. (2021-12-12)[2025-06-29]. https://www.gov.cn/zhengce/zhengceku/2022-01/12/content_5667817.htm. |
| [9] |
中共中央办公厅 国务院办公厅印发《关于进一步完善医疗卫生服务体系的意见》 [EB/OL]. (2023-03-23)[2025-06-29]. https://www.gov.cn/zhengce/202304/content_6762874.htm. |
| [10] |
The General Office of the Communist Party of China Central Committee and the General Office of the State Council issued the opinions on further improving the medical and health service system [EB/OL]. (2023-03-23)[2025-06-29]. https://www.gov.cn/zhengce/202304/content_6762874.htm. |
| [11] |
国家发展改革委办公厅. 国家重点研发计划“主动健康和人口老龄化科技应对”重点专项2024年度项目申报指南 [EB/OL]. (2024-08-15)[2025-07-29]. https://research.bjmu.edu.cn/kyxm/kjbxm/kyxm_kjbxm_tzgg/a456bfb27fd147998228795c2c278bd5.htm. |
| [12] |
The General Office of the National Development and Reform Commission. Application guidelines for the 2024 annual projects of the key special project “Proactive health and technological response to population aging” under the National Key R&D Program [EB/OL]. (2024-08-15)[2025-07-29]. https://research.bjmu.edu.cn/kyxm/kjbxm/kyxm_kjbxm_tzgg/a456bfb27fd147998228795 c2c278bd5.htm. |
| [13] |
陈超亿, 陈浩, 冯占春, 数字健康视角下主动健康管理内涵及优化路径 [J]. 中国预防医学杂志, 2024, 25(11): 1463‒1468. |
| [14] |
Chen C Y, Chen H, Feng Z C, et al. Exploring the connotation and optimization pathways of proactive health management from the perspective of digital health [J]. Chinese Preventive Medicine, 2024, 25(11): 1463‒1468. |
| [15] |
高翔, 李晓光, 周良, 基于主动健康指数的数字化慢性病防控的思考与探索 [J]. 上海交通大学学报(医学版), 2023, 43(2): 137‒142. |
| [16] |
Gao X, Li X G, Zhou L, et al. Reflection and exploration of digital chronic disease management based on the proactive health index [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2023, 43(2): 137‒142. |
| [17] |
Pong C, Tseng R M W W, Tham Y C, et al. Current implementation of digital health in chronic disease management: Scoping review [J]. Journal of Medical Internet Research, 2024, 26: e53576. |
| [18] |
Litvinova O, Bilir A, Parvanov E D, et al. Patent landscape review of non-invasive medical sensors for continuous monitoring of blood pressure and their validation in critical care practice [J]. Frontiers in Medicine, 2023, 10: 1138051. |
| [19] |
Fonseca P, Weysen T, Goelema M S, et al. Validation of photoplethysmography-based sleep staging compared with polysomnography in healthy middle-aged adults [J]. Sleep, 2017, 40(7): zsx097. |
| [20] |
徐成喜, 李志伟, 姚佳烽. 光电容积脉搏波技术在可穿戴医疗设备中的应用及其未来发展 [J]. 现代仪器与医疗, 2024, 30(3): 58‒63, 76. |
| [21] |
Xu C X, Li Z W, Yao J F. Applications and future developments of photoplethysmography technology in wearable medical devices [J]. Modern Instruments & Medical Treatment, 2024, 30(3): 58‒63, 76. |
| [22] |
Bermad N, Zemmoudj S, Bouallouche-Medjkoune L, et al. Pseudonym revocation system for IoT-based medical applications [J]. Computer Networks, 2025, 257: 110983. |
| [23] |
李丽轩, 梁洪, 范勇, 基于物联网和可穿戴技术的智能监护系统研发及其应用模式探索研究 [J]. 生物医学工程学杂志, 2023, 40(6): 1053‒1061. |
| [24] |
Li L X, Liang H, Fan Y, et al. Development of intelligent monitoring system based on Internet of things and wearable technology and exploration of its clinical application mode [J]. Journal of Biomedical Engineering, 2023, 40(6): 1053‒1061. |
| [25] |
王文宗, 王扬扬, 陈南霖, 一种面向独居老人的智能药盒设计 [J]. 科技与创新, 2024 (19): 49‒51. |
| [26] |
Wang W Z, Wang Y Y, Chen N L, et al. Design of an intelligent medicine box for the elderly living alone [J]. Science and Technology & Innovation, 2024 (19): 49‒51. |
| [27] |
Giannios G, Mpaltadoros L, Alepopoulos V, et al. A semantic framework to detect problems in activities of daily living monitored through smart home sensors [J]. Sensors, 2024, 24(4): 1107. |
| [28] |
Supramaniam P, Beh Y S, Junus S, et al. Exploring mHealth app utilization for diabetes self-management: Survey insights from a northern district in Malaysia [J]. BMC Public Health, 2024, 24(1): 3542. |
| [29] |
赵栋祥. 移动健康管理服务使用意愿的影响因素研究——基于创新扩散的视角 [J]. 情报杂志, 2017, 36(11): 120‒127, 146. |
| [30] |
Zhao D X. Empirical research on the influencing factors of the intention to use of mobile health management service: From the perspective of innovation diffusion [J]. Journal of Intelligence, 2017, 36(11): 120‒127, 146. |
| [31] |
Russell L E, Schwarz U I. Variant discovery using next-generation sequencing and its future role in pharmacogenetics [J]. Pharmacogenomics, 2020, 21(7): 471‒486. |
| [32] |
Farmaki A, Manolopoulos E, Natsiavas P. Will precision medicine meet digital health? A systematic review of pharmacogenomics clinical decision support systems used in clinical practice [J]. OMICS: A Journal of Integrative Biology, 2024, 28(9): 442‒460. |
| [33] |
Gao Y, Yang X F, Chen H, et al. A pangenome reference of 36 Chinese populations [J]. Nature, 2023, 619(7968): 112‒121. |
| [34] |
Dolezalova N, Reed A B, Despotovic A, et al. Development of an accessible 10-year digital CArdioVAscular (DiCAVA) risk assessment: A UK biobank study [J]. European Heart Journal — Digital Health, 2021, 2(3): 528‒538. |
| [35] |
冯建峰, 王拥军, 徐涛, 全维度数据与智能诊疗的前沿与挑战——第232期“双清论坛” 学术综述 [J]. 中国科学基金, 2021, 35(1): 73‒80. |
| [36] |
Feng J F, Wang Y J, Xu T, et al. Full-dimension data and intelligence medical care: Prospects and challenges [J]. Bulletin of National Natural Science Foundation of China, 2021, 35(1): 73‒80. |
| [37] |
McKinney S M, Sieniek M, Godbole V, et al. Addendum: International evaluation of an AI system for breast cancer screening [J]. Nature, 2020, 586(7829): E19. |
| [38] |
U.S. Food and Drug Administration (FDA). Artificial intelligence and machine learning (AI/ML)-Enabled Medical Devices [EB/OL]. [2025-02-20]. https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices. |
| [39] |
Patel T A, Puppala M, Ogunti R O, et al. Correlating mammographic and pathologic findings in clinical decision support using natural language processing and data mining methods [J]. Cancer, 2017, 123(1): 114‒121. |
| [40] |
Qian X J, Pei J, Han C G, et al. A multimodal machine learning model for the stratification of breast cancer risk [J]. Nature Biomedical Engineering, 2024, 9(3): 356‒370. |
| [41] |
罗基, 王雪颖, 张佳妮, 中医智能诊断装备研究现状及发展趋势探讨 [J]. 中华中医药杂志, 2024, 39(10): 5386‒5389. |
| [42] |
Luo J, Wang X Y, Zhang J N, et al. Review of the research status and development trend of intelligent diagnostic devices of traditional Chinese medicine [J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2024, 39(10): 5386‒5389. |
| [43] |
Roberts M C, Holt K E, Del Fiol G, et al. Precision public health in the era of genomics and big data [J]. Nature Medicine, 2024, 30(9): 1865‒1873. |
| [44] |
Mobed A, Ahmadalipour A, Fakhari A, et al. Bioassay: A novel approach in antipsychotic pharmacology [J]. Clinica Chimica Acta, 2020, 509: 30‒35. |
| [45] |
Swanson K, Wu E, Zhang A, et al. From patterns to patients: Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment [J]. Cell, 2023, 186(8): 1772‒1791. |
| [46] |
国家药品监督管理局. 数字疗法医疗器械注册与分类统计 [EB/OL]. [2025-08-29]. https://www.nmpa.gov.cn/zwfw/sdxx/sdxxylqx/ylqxzysq/. |
| [47] |
National Medical Products Administration. Statistics on registration and classification of digital therapy medical devices [EB/OL]. [2025-08-29]. https://www.nmpa.gov.cn/zwfw/sdxx/sdxxylqx/ylqxzysq/. |
| [48] |
国家老年医学中心, 中华医学会老年医学分会, 中国老年保健协会糖尿病专业委员会. 中国老年糖尿病诊疗指南(2024版) [J]. 协和医学杂志, 2024, 15(4): 771‒800. |
| [49] |
National Center of Gerontology, Chinese Society of Geriatrics, Diabetes Professional Committee of Chinese Aging Well Association. Guideline for the management of diabetes mellitus in the elderly in China (2024 edition) [J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(4): 771‒800. |
| [50] |
廖生武, 刘天峰, 赵云, 欧美发达国家远程医疗服务模式对我国的启示 [J]. 中国卫生事业管理, 2015, 32(10): 730‒732. |
| [51] |
Liao S W, Liu T F, Zhao Y, et al. Thinking of remote medical service in Europe and United States [J]. Chinese Health Service Management, 2015, 32(10): 730‒732. |
| [52] |
白剑峰. 远程医疗服务网络覆盖所有市县七成卫生院与上级医院建立远程医疗协作关系 [EB/OL]. (2024-06-19)[2024-12-28]. http://gs.people.com.cn/n2/2024/0619/c183342-40884190.html. |
| [53] |
Bai J F. Telemedicine service network covers all cities and counties, with 70% of township health centers establishing telemedicine collaboration with higher-level hospitals [EB/OL]. (2024-06-19)[2024-12-28]. http://gs.people.com.cn/n2/2024/0619/c183342-40884190.htm. |
| [54] |
Imamura T, Narang N, Kinugawa K. Validation of artificial intelligence-based application to estimate nutrients in daily meals [J/OL]. Journal of Cardiology, [2024-11-07]. https://www.journal-of-cardiology.com/article/S0914-5087(24)00209-0/abstract. |
| [55] |
科技日报. 少年发明智能餐具 可扫描食物中的细菌和营养成分 [J]. 中国食品学报, 2016, 16 (1): 236. |
| [56] |
Science and Technology Daily. Teenager invents smart utensils capable of scanning bacteria and nutrients in food [J]. Journal of Chinese Institute of Food Science and Technology, 2016, 16 (1): 236. |
| [57] |
国家药品监督管理局. 人工智能医用软件产品分类界定指导原则 [EB/OL]. (2021-07-08)[2025-08-29]. https://www.nmpa.gov.cn/ylqx/ylqxggtg/20210708111147171.html. |
| [58] |
National Medical Products Administration. Guidance principles for the classification and definition of artificial intelligence medical software products [EB/OL]. (2021-07-08)[2025-08-29]. https://www.nmpa.gov.cn/ylqx/ylqxggtg/20210708111147171.html. |
| [59] |
李晓文, 徐媛媛, 翟雪松, 生成式人工智能赋能高校学生发展: 国际经验与中国路径 [J]. 中国远程教育, 2024 (12): 36‒49. |
| [60] |
Li X W, Xu Y Y, Zhai X S, et al. International experience and China's approach in empowering college students' development through generative artificial intelligence [J]. Chinese Journal of Distance Education, 2024 (12): 36‒49. |
| [61] |
葛振兴, 李晓光, 王慧. 老年数字化健康管理研究进展 [J]. 生命科学, 2023, 35(8): 984‒993. |
| [62] |
Ge Z X, Li X G, Wang H. Advancements in digital health management for the elderly: A comprehensive review [J]. Chinese Bulletin of Life Sciences, 2023, 35(8): 984‒993. |
| [63] |
杨诗彤, 李志媛, 高俊岭, 上海市中老年人社区社会网络与心理健康的关系研究 [J]. 中国慢性病预防与控制, 2024, 32(10): 752‒755, 761. |
| [64] |
Yang S T, Li Z Y, Gao J L, et al. Relationship between community social networks and mental health among middle-aged and elderly people in Shanghai [J]. Chinese Journal of Prevention and Control of Chronic Diseases, 2024, 32(10): 752‒755, 761. |
| [65] |
Ding X R, Clifton D, Ji N, et al. Wearable sensing and telehealth technology with potential applications in the coronavirus pandemic [J]. IEEE Reviews in Biomedical Engineering, 2021, 14: 48‒70. |
| [66] |
姚立伟. 可穿戴设备测量准确度如何?研究发现误差较大 [EB/OL]. (2024-08-21)[2025-02-16]. https://m.sohu.com/a/802505834_114822. |
| [67] |
Yao L W. How accurate are wearable devices in measurement? The study finds significant errors [EB/OL]. (2024-08-21)[2025-02-16]. https://m.sohu.com/a/802505834_114822. |
| [68] |
Perez A J, Zeadally S. Recent advances in wearable sensing technologies [J]. Sensors, 2021, 21(20): 6828. |
| [69] |
王翔. 责任伦理视角下数字健康服务治理 [J]. 中国卫生事业管理, 2023, 40(6): 404‒407. |
| [70] |
Wang X. Study on the governance of digital health services from the perspective of responsibility ethics [J]. Chinese Health Service Management, 2023, 40(6): 404‒407. |
| [71] |
Andaur Navarro C L, Damen J A A, Takada T, et al. Risk of bias in studies on prediction models developed using supervised machine learning techniques: Systematic review [J]. BMJ, 2021, 375: n2281. |
| [72] |
Enichen E J, Heydari K, Li B, et al. Telemedicine expands cardiovascular care in China—Lessons for health equity in the United States [J]. NPJ Digital Medicine, 2025, 8: 71. |
| [73] |
朱天顺, 朱可可, 焦聪聪, 健康中国背景下主动健康在老龄化社会中的应用分析 [J]. 卫生软科学, 2025, 39(1): 23‒26. |
| [74] |
Zhu T S, Zhu K K, Jiao C C, et al. Analysis of the application of proactive health in the ageing society in the context of healthy China [J]. Soft Science of Health, 2025, 39(1): 23‒26. |
中国工程院咨询项目“数字医疗发展战略及能力建设研究”(2024-XBZD-18)
/
| 〈 |
|
〉 |