我国内陆核电发展问题的再研究
王莹杰 , 彭现科 , 赵万广 , 周觅 , 苏罡 , 罗琦 , 叶奇蓁 , 赵宪庚
中国工程科学 ›› 2025, Vol. 27 ›› Issue (6) : 1 -12.
我国内陆核电发展问题的再研究
Re-examination of the Development Issues of Inland Nuclear Power in China
核能作为一种清洁低碳、稳定高效的高能量密度基荷能源,已成为多国能源战略的重要组成部分,发展核电对我国能源结构转型具有重要意义。然而,与全球发展趋势及我国领先的核电装机规模相比,内陆核电可行路径与发展方案亟待明确,我国内陆地区尚未部署建设核电站。本文从战略必要性与技术可行性两个维度,结合最新发布的《核动力厂环境辐射防护规定》(GB 6249—2025),系统分析和论证重启内陆核电建设的现实条件。研究认为,发展内陆核电对于保障国家能源安全、构建新型电力系统及推动区域战略实施具有重要且迫切的必要性;同时,我国成熟的第三代压水堆核电技术为内陆厂址的环境安全提供了可靠保障,具备内陆部署的技术可行性。研究建议,将内陆核电纳入“十五五”发展规划,设立针对氚和碳-14核素的处理与排放技术攻关专项,适时启动内陆示范工程建设,持续完善配套法律法规与公众沟通机制,推动内陆核电科学有序发展,为我国能源绿色转型与高质量发展注入强劲动力。
Nuclear energy, characterized by cleanliness, low carbon emissions, stability, high efficiency, high energy density, and suitability as a baseload power source, has become an essential element of the energy strategies in many countries. The development of nuclear power is of crucial importance for China’s transition in energy structure. Despite global trends and China’s leading position in installed nuclear capacity, the country has not yet commenced the construction of nuclear power plants in inland regions. There is an urgent need to clarify the feasible pathway and development plans for inland nuclear power. This study systematically analyzes and makes the case for resuming the construction of inland nuclear power plants, focusing on two key dimensions—strategic necessity and technical feasibility—in conjunction with the newly released “Regulations for environmental radiation protection of nuclear power plant” (GB 6249—2025). The study concludes that developing inland nuclear power is both highly necessary and urgent in terms of safeguarding national energy security, constructing a new power system, and advancing regional strategic implementation. Concurrently, China’s mature third-generation pressurized water reactor technology provides reliable assurance of environmental safety for inland sites, demonstrating technical feasibility for inland deployment. It is recommended that inland nuclear power be included in the 15th Five-Year Plan, with the establishment of a dedicated research program focused on the treatment and discharge technologies for tritium and carbon-14 nuclides, and that demonstration projects for inland nuclear power be initiated in a timely manner. Meanwhile, supporting laws, regulations, and public communication mechanisms should be continuously improved. Promoting the scientific and orderly development of inland nuclear power will inject strong momentum into China’s transition toward green and high-quality energy development.
内陆核电 / 排放标准 / 纵深防御 / 氚 / 碳-14 / 极端事故
inland nuclear power / emission standards / defense in depth / tritium / carbon-14 / extreme accident
| [1] |
段阳伟, 王凯. 俄乌冲突下的能源安全及我国的应对 [J]. 中外能源, 2024, 29(6): 8‒14. |
| [2] |
Duan Y W, Wang K. Energy security in the context of Russia-Ukraine conflict and China's response [J]. Sino-Global Energy, 2024, 29(6): 8‒14. |
| [3] |
谢昭. 2024年成为史上最热一年 [N]. 环球时报, 2025-01-02(08). |
| [4] |
Xie Z. 2024 becomes hottest year on record [N]. Global Times, 2025-01-02(08). |
| [5] |
巴黎协定 [EB/OL]. (2015-12-12)[2025-05-23]. https://unfccc.int/sites/default/files/chinese_paris_agreement.pdf. |
| [6] |
Paris agreement [EB/OL]. (2015-12-12)[2025-05-23]. https://unfccc.int/sites/default/files/chinese_paris_agreement.pdf. |
| [7] |
UNFCCC Secretariat. Technical dialogue of the first global stocktake. Synthesis report by the co-facilitators on the technical dialogue [EB/OL]. (2023-09-08)[2025-05-23]. https://unfccc.int/sites/default/files/resource/sb2023_09E.pdf. |
| [8] |
Donovan J. Nuclear energy makes history as final COP28 agreement calls for faster deployment [EB/OL]. (2023-12-13)[2025-05-23]. https://www.iaea.org/newscenter/news/nuclear-energy-makes-history-as-final-cop28-agreement-calls-for-faster-deployment. |
| [9] |
邓琨. 俄乌冲突对全球核电市场的影响分析 [J]. 产业与科技论坛, 2023, 22(11): 15‒17. |
| [10] |
Deng K. Analysis of the impact of Russia‒Ukraine conflict on the global nuclear power market [J]. Industrial & Science Tribune, 2023, 22(11): 15‒17. |
| [11] |
王墨, 杨鹏, 赵宏. 从COP28到COP29: 美主导的《三倍核能宣言》进展及其影响 [J]. 国外核新闻, 2025 (1): 3‒5. |
| [12] |
Wang M, Yang P, Zhao H. From COP28 to COP29: Progress and influence of the declaration of triple nuclear energy led by the United States [J]. Foreign Nuclear News, 2025 (1): 3‒5. |
| [13] |
IAEA statement on nuclear power at COP28 [EB/OL]. (2023-12-01)[2025-05-23]. https://www.iaea.org/newscenter/statements/iaea-statement-on-nuclear-power-at-cop28. |
| [14] |
U.S. Department of Energy. Pathways to commercial liftoff: advanced nuclear [R]. Washington DC: U.S. Department of Energy, 2023. |
| [15] |
Nuclear included in NZIA by European Council [EB/OL]. (2023-12-11)[2025-05-23]. https://www.world-nuclear-news.org/Articles/Nuclear-included-in-NZIA-by-European-Council. |
| [16] |
European Parliament. Framework of measures for strengthening Europe's net-zero technology products manufacturing ecosystem (Net zero industry act) [R]. Strasbourg: European ParliamenT, 2023. |
| [17] |
杨舒宇, 陈欣. 美签行政令, 欲推动"核能复兴" [N]. 环球时报, 2025-05-26(06). |
| [18] |
Yang S Y, Chen X. U.S. signs executive order aiming to promote "nuclear energy renaissance" [N]. Global Times, 2025-05-26(06). |
| [19] |
王宝锟. 全球核电市场迎来新机遇 [N]. 经济日报, 2025-06-27(04). |
| [20] |
Wang B K. Global nuclear power market facing new opportunities [N]. Economic Daily, 2025-06-27(04). |
| [21] |
丁怡婷. 我国核电在运在建规模升至世界第一 [N]. 人民日报, 2024-12-18(04). |
| [22] |
Ding Y T. China's nuclear power in operation and under construction scale rises to world's first [N]. People's Daily, 2024-12-18(04). |
| [23] |
中国核能行业协会. 中国核能发展报告2025 [R]. 北京: 中国核能行业协会, 2025. |
| [24] |
China Nuclear Energy Association. China nuclear energy development report 2025 [R]. Beijing: China Nuclear Energy Association, 2025. |
| [25] |
International Atomic Energy Agency. Energy, electricity and nuclear power estimates for the period up to 2050 [R]. Vienna: International Atomic Energy Agency, 2025. |
| [26] |
International Energy Agency. World energy outlook 2024 [R]. Paris: International Energy Agency, 2024. |
| [27] |
世界核协会发布《核燃料报告: 2023—2040年全球需求和供应情景》 [J]. 辐射防护, 2023, 43(6): 619. |
| [28] |
The World Nuclear Association released the nuclear fuel report: Global demand and supply scenarios from 2023 to 2040 [J]. Radiation Protection, 2023, 43(6): 619. |
| [29] |
李晨曦, 伍浩松. 世界核协会发布新版核燃料报告 [J]. 国外核新闻, 2021 (10): 13‒14. |
| [30] |
Li C X, Wu H S. World Nuclear Association releases new nuclear fuel report [J]. Foreign Nuclear News, 2021 (10): 13‒14. |
| [31] |
中国能源中长期发展战略研究项目组. 中国能源中长期(2030、2050)发展战略研究: 电力·油气·核能·环境卷 [M]. 北京: 科学出版社, 2011. |
| [32] |
China Energy Medium- and Long-Term Development Strategy Research Project Team. Study on China's medium- and long-term energy development strategy (2030 and 2050): electricity, oil and gas, nuclear energy and environment [M]. Beijing: Science Press, 2011. |
| [33] |
张廷克, 李闽榕, 尹卫平. 中国核能发展报告—2022 [M]. 北京: 社会科学文献出版社, 2022. |
| [34] |
Zhang T K, Li M R, Yin W P, et al. Blue book of nuclear energy development: report on China's nuclear energy development (2022) [M]. Beijing: Social Science Literature Press, 2022. |
| [35] |
中国核电发展中心, 国网能源研究院有限公司. 我国核电发展规划研究 [M]. 北京: 中国原子能出版社, 2019. |
| [36] |
China Nuclear Power Development Center, State Grid Energy Research Institute. Study on China's nuclear power development planning [M]. Beijing: China Atomic Energy Press, 2019. |
| [37] |
Carden K, Dombrowsky A, Nathan A. Effective load carrying capability study: Final report [EB/OL]. (2025-02-11)[2024-05-23]. https://www.ercot.com/files/docs/2025/02/12/2024ERCOT_ELCC_Study_Final_Report02112025.pdf. |
| [38] |
冯君淑, 伍声宇, 吕梦璇. 区域电力"双碳"目标推进侧重点分析 [N]. 中国电力报, 2024-10-10(04). |
| [39] |
Feng J S, Wu S Y, Lyu M X. Analysis on the focus of regional electric power "double carbon" target [N]. China Electric Power News, 2024-10-10(04). |
| [40] |
国网能源研究院有限公司. 中国能源电力发展展望2023 [M]. 北京: 中国电力出版社, 2024. |
| [41] |
State Grid Energy Research Institute Co., Ltd. China energy and power development outlook 2023 [M]. Beijing: China Electric Power Press, 2024. |
| [42] |
梁双, 王涉, 徐辉. 中国西电东送40年发展成效与政策建议 [J]. 中国电力, 2024, 57(11): 88‒93. |
| [43] |
Liang S, Wang S, Xu H. Development achievements and policy suggestions of China's west to east power transmission for 40 years [J]. Electric Power, 2024, 57(11): 88‒93. |
| [44] |
刘永叶, 杨阳, 乔亚华, 不同排放深度下温升作用对核电厂液态流出物近区稀释的影响研究 [J]. 辐射防护, 2017, 37(5): 355‒360. |
| [45] |
Liu Y Y, Yang Y, Qiao Y H, et al. Study on the influence of thermal discharge on near field dilution of liquid effluent from inland NPPs [J]. Radiation Protection, 2017, 37(5): 355‒360. |
| [46] |
刘江海, 贾惠敏, 于湉湉, 后处理厂含氚废水处理技术 [J]. 广东化工, 2023, 50(11): 168‒170. |
| [47] |
Liu J H, Jia H M, Yu T T, et al. Treatment of tritiated wastewater in reprocessing plant [J]. Guangdong Chemical Industry, 2023, 50(11): 168‒170. |
| [48] |
罗阳明, 孙颖, 彭述明, 含氚重水提氚工艺技术进展 [R]. 绵阳: 第二届全国核技术及应用研究学术研讨会, 2009. |
| [49] |
Luo Y M, Sun Y, Peng S M, et al. Progress in tritium extraction technology using tritium-containing heavy water [R]. Mianyang: Second National Academic Symposium on Nuclear Technology and Applications, 2009. |
| [50] |
梁小虎, 杨素亮, 杨磊, 低放废水中氚的快速分离方法 [R]. 北京: 中国原子能科学研究院, 2012. |
| [51] |
Liang X H, Yang S L, Yang L, et al. Rapid separation method for tritium in low-level radioactive wastewater [R]. Beijing: China Institute of Atomic Energy, 2012. |
| [52] |
王君妍, 高娇, 陈超. 核电站液态流出物氚减排方案设计 [J]. 辐射研究与辐射工艺学报, 2025, 43(2): 110‒119. |
| [53] |
Wang J Y, Gao J, Chen C. Design of tritium reduction scheme for liquid effluents of nuclear power plants [J]. Journal of Radiation Research and Radiation Processing, 2025, 43(2): 110‒119. |
| [54] |
Davidson R B, Von Hatten P, Schaub M, et al. Commissioning and first operating experience at Darlington tritium removal facility [J]. Fusion Technology, 1988, 14(2P2A): 472‒479. |
| [55] |
王奇. 取消次级中子源对压水堆氚源项的影响分析 [J]. 强激光与粒子束, 2023, 35(11): 146‒151. |
| [56] |
Wang Q. Analysis of the impact of canceling secondary neutron sources on tritium sources in pressurized water reactors [J]. High Power Laser and Particle Beams, 2023, 35(11): 146‒151. |
| [57] |
Magnusson Å, Aronsson P O, Lundgren K, et al. Characterization of 14C in Swedish light water reactors [J]. Health Physics, 2008, 95(2): 110‒121. |
| [58] |
Kunz C. Carbon-14 discharge at three light-water reactors [J]. Health Physics, 1985, 49(1): 25‒35. |
| [59] |
International Symposium on Management of Gaseous Wastes from Nuclear Facilities. Management of gaseous wastes from nuclear facilities[R]. Vienna: International Atomic Energy Agency, 1980. |
| [60] |
周国丰. 核电厂痕量气载碳14处理工艺关键技术研究 [D]. 上海: 上海交通大学(博士学位论文), 2019. |
| [61] |
Zhou G F. Key technologies for the treatment of trace carbon-14 in nuclear power plants [D]. Shanghai: Shanghai Jiao Tong University (Doctoral dissertation), 2019. |
| [62] |
Cheh C H. Removal of 14C from nitrogen annulus gas [R]. Baltimore: The 18th DOE Nuclear Airborne Waste Management and Air Cleaning Conference, 1985. |
| [63] |
Chang S D, Cheh C H, Leinonen P J. Demonstration of carbon-14 removal at CANDU nuclear generating stations [R]. San Diego: The 21st DOE/NRC Nuclear Air Cleaning Conference, 1990. |
中国工程院咨询项目“我国能源安全战略研究”(2022-JB-05)
“内陆核电及核技术应用创新发展战略研究”(2023-HYZD-03)
/
| 〈 |
|
〉 |