大型复杂航天器在轨动力学关键技术与工程实践
陈余军 , 邓明乐 , 李峰 , 刘绍奎 , 董富祥 , 庞世伟 , 季袁冬 , 李友遐 , 周志成
中国工程科学 ›› 2025, Vol. 27 ›› Issue (6) : 1 -19.
大型复杂航天器在轨动力学关键技术与工程实践
Key Technologies and Engineering Practices for On-Orbit Dynamics of Large and Complex Spacecraft
随着航天重大工程的深入实施,大型复杂航天器呈现规模更大、性能更高、多载荷融合的发展趋势,涉及的在轨动力学问题更为复杂。在此背景下,本文面向大型复杂航天器动力学领域,系统梳理和总结了研究团队在“十三五”“十四五”时期的相应技术攻关与工程实践进展:以大尺寸可展开天线、激光通信终端、大型光学相机等典型载荷的工程应用需求为牵引,针对相关类型航天器的复杂结构在轨动力学行为预示、有效载荷受复杂在轨环境扰动时的稳定工作评估等问题,攻关了大口径环形天线柔性动力学非线性建模与降阶、大尺寸空间结构在轨展开动力学精确建模与高效仿真、多扰动源对高精高稳载荷的微振动评估、刚 ‒ 液 ‒ 柔耦合动力学建模与仿真、系统级热变形建模与仿真等关键技术;自主开发了大型复杂航天器动力学集成仿真软件。上述成果成功应用于大尺寸可展开天线类、高分辨率光学遥感类、星间激光通信类卫星的工程研制,顺利通过了地面试验和在轨飞行验证。进一步,把握当前大型复杂航天器工程研制、未来新型航天器研发等需求,展望了总体设计、动力学与控制、验证及预测等方面的技术研究方向。相关内容可为指导航天器设计与在轨使用、解决未来复杂航天巨系统中的动力学难题等提供参考。
With the deepening implementation of major aerospace projects, large and complex spacecraft are evolving toward larger scales, higher performance, and multi-payload integration, leading to increasingly complex on-orbit dynamics issues. This study focuses on the field of dynamics for large and complex spacecraft, systematically reviewing the research team's technological breakthroughs and engineering practices during the 13th and 14th Five-Year Plan periods of China. Driven by the engineering application demand for typical payloads such as large deployable antennas, laser communication terminals, and large optical cameras, key technologies were addressed, including nonlinear modeling and model reduction for flexible dynamics of large-aperture annular antennas, high-fidelity modeling and efficient simulation of on-orbit deployment dynamics for large space structures, micro-vibration assessment of high-precision and high-stability payloads under multi-source disturbances, rigid‒liquid‒flexible coupled dynamics modeling and simulation, and system-level thermal deformation modeling and simulation. An integrated simulation software system for the dynamics of large-scale complex spacecraft, with independent intellectual property rights, was developed. These achievements have been successfully applied in the engineering development of satellites with large deployable antennas, high-resolution optical remote sensing systems, and inter-satellite laser communications, and have been validated through ground tests and on-orbit flight experiments. Furthermore, considering the needs of current engineering development for large and complex spacecraft and the future development of new spacecraft, technical research directions in system design, dynamics and control, verification, and prediction are outlined. The relevant content are expected to provide references for guiding spacecraft design and on-orbit operations, as well as addressing future dynamic challenges in complex space systems.
大型复杂航天器 / 在轨动力学 / 大尺寸可展开天线 / 高精高稳载荷
large-scale complex spacecraft / on-orbit dynamics / large deployable antennas / high-precision and high-stability payloads
| [1] |
国家发展和改革委员会, 财政部, 国防科技工业局. 国家民用空间基础设施中长期发展规划 (2015—2025年) [EB/OL]. (2015-10-29)[2025-10-15]. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/201510/t20151029_962171.html. |
| [2] |
National Development and Reform Commission, Ministry of Finance, National Defense Science, Technology and Industry Administration. Medium-and long-term development plan for national civil space infrastructure (2015—2025) [EB/OL]. (2015-10-29)[2025-10-15]. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/201510/t20151029_962171.html. |
| [3] |
中华人民共和国国务院新闻办公室. 《2021中国的航天》白皮书 [EB/OL]. (2021-01-28)[2025-10-15]. https://www.gov.cn/zhengce/2022-01/28/content_5670920.htm. |
| [4] |
The State Council Information Office of the People's Republic of China. China's space program: A 2021 perspective [EB/OL]. (2021-01-28)[2025-10-15]. https://www.gov.cn/zhengce/2022-01/28/content_5670920.htm. |
| [5] |
李文龙, 孔祥龙, 马伟, 高轨卫星平台在轨顽存技术体系 [J]. 系统工程与电子技术, 2021, 43(3): 731‒739. |
| [6] |
Li W L, Kong X L, Ma W, et al. Technology system of on-orbit strong survivability for GEO satellite bus [J]. Systems Engineering and Electronics, 2021, 43(3): 731‒739. |
| [7] |
冯建元, 李杰, 庞立新, 从运营角度探讨GEO卫星演进关键技术 [J]. 无线电通信技术, 2024, 50(3): 422‒426. |
| [8] |
Feng J Y, Li J, Pang L X, et al. Exploring key technologies for GEO satellite evolution from an operational perspective [J]. Radio Communications Technology, 2024, 50(3): 422‒426. |
| [9] |
赵聪. “鸿雁”星座首颗试验卫星发射 [J]. 中国航天, 2019 (1): 45‒46. |
| [10] |
Zhao C. Launch of the first experimental satellite for the Hongyan constellation [J]. Aerospace China, 2019 (1): 45‒46. |
| [11] |
王韵涵. 2021年国外通信卫星发展综述 [J]. 国际太空, 2022 (2): 42‒47. |
| [12] |
Wang Y H. Review of international communications satellite development in 2021 [J]. Space International, 2022 (2): 42‒47. |
| [13] |
李峰, 禹航, 丁睿, 我国空间互联网星座系统发展战略研究 [J]. 中国工程科学, 2021, 23(4): 137‒144. |
| [14] |
Li F, Yu H, Ding R, et al. Development strategy of space internet constellation system in China [J]. Strategic Study of CAE, 2021, 23(4): 137‒144. |
| [15] |
Ma X F, Li T J, Ma J Y, et al. Recent advances in space-deployable structures in China [J]. Engineering, 2022, 17(10): 207‒219. |
| [16] |
刘荣强, 史创, 郭宏伟, 空间可展开天线机构研究与展望 [J]. 机械工程学报, 2020, 56(5): 1‒12. |
| [17] |
Liu R Q, Shi C, Guo H W, et al. Review of space deployable antenna mechanisms [J]. Journal of Mechanical Engineering, 2020,56(5): 1‒12. |
| [18] |
谢珊珊, 梁晓莉. 国外卫星激光通信技术发展分析 [J]. 中国航天, 2021 (12): 42‒46. |
| [19] |
Xie S S, Liang X L. Study of development in international satellite laser communication technology [J]. Aerospace China, 2021 (12): 42‒46. |
| [20] |
高铎瑞, 谢壮, 马榕, 卫星激光通信发展现状与趋势分析 [J]. 光子学报, 2021, 50(4): 1‒21. |
| [21] |
Gao D R, Xie Z, Ma R, et al. Development current status and trend analysis of satellite laser communication [J]. Acta Photonica Sinica, 2021, 50(4): 1‒21. |
| [22] |
张若凡, 张文睿, 张学娇, 高轨卫星激光中继链路研究现状及发展趋势 [J]. 激光与光电子学进展, 202l, 58(5): 1‒13. |
| [23] |
Zhang R F, Zhang W R, Zhang X J, et al. Research status and development trend of high earth orbit satellite laser relay links [J]. Laser & Optoelectronics Progress, 202l, 58(5): 1‒13. |
| [24] |
刘韬, 周润松. 国外静止轨道高分辨率光学成像系统发展综述 [J]. 航天器工程, 2017, 26(4): 91‒100. |
| [25] |
Liu T, Zhou R S. Development overview on GEO high resolution optical imaging system [J]. Spacecraft Engineering, 2017, 26(4): 91‒100. |
| [26] |
于登云. 航天与力学(第三卷) [M]. 北京: 国防工业出版社, 2020. |
| [27] |
Yu D Y. Aerospace and mechanics (Volume 3) [M]. Beijing: National Defense Indnstry Press, 2020. |
| [28] |
庞世伟, 郭倩蕊, 贺玮, 某遥感卫星微振动对成像质量影响分析 [J]. 航天器环境工程, 2019, 36(1): 47‒55. |
| [29] |
Pang S W, Guo Q R, He W, et al. Influence of micro-vibration on image quality of a remote sensing satellite [J]. Spacecraft Environment Engineering, 2019, 36(1): 47‒55. |
| [30] |
曲广吉. 航天器动力学技术的发展和挑战 [J]. 强度与环境, 2003, 30(4): 1‒6. |
| [31] |
Qu G J. Development and challenge of spacecraft dynamics technology [J]. Structure and Environment Engineering, 2003, 30(4): 1‒6. |
| [32] |
史纪鑫, 曲广吉. 可变构型复合柔性结构航天器动力学建模研究 [J]. 宇航学报, 2007, 28(1): 130‒135. |
| [33] |
Shi J X, Qu G J. Mathematical modeling of a class of variable structure spacecraft with flexible multibody appendages [J]. Journal of Astronautics, 2007, 28(1): 130‒135. |
| [34] |
黄文虎, 曹登庆, 韩增尧. 航天器动力学与控制的研究进展与展望 [J]. 力学进展, 2012, 42(4): 367‒394. |
| [35] |
Huang W H, Cao D Q, Han Z Y. Advances and trends in dynamics and control of spacecraft [J]. Advances in Mechanics, 2012, 42(4): 367‒394. |
| [36] |
胡海岩, 田强, 张伟, 大型网架式可展开空间结构的非线性动力学与控制 [J]. 力学进展, 2013, 43(4): 390‒414. |
| [37] |
Hu H Y, Tian Q, Zhang W, et al. Nonlinear dynamics and control of large deployable space structures composed of trusses and meshes [J]. Advances in Mechanics, 2013, 43(4): 390‒414. |
| [38] |
曹登庆, 白坤朝, 丁虎, 大型柔性航天器动力学与振动控制研究进展 [J]. 力学学报, 2019, 51(1): 1‒13. |
| [39] |
Cao D Q, Bai K C, Ding H, et al. Advances in dynamics and vibration control of large-scale flexible spacecraft [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 1‒13. |
| [40] |
Hablani H B. Hinges-free and hinges-locked modes of a deformable multibody space station—A continuum analysis [J]. Journal of Guidance Control and Dynamics, 1990, 13(2): 286‒296. |
| [41] |
Hablani H B. Generic model of a large flexible space structure for control concept evaluation [J]. Journal of Guidance Control and Dynamics, 1981, 4(5): 558‒561. |
| [42] |
Hablani H B. Modal analysis of gyroscopic flexible spacecraft: A continuum approach [J]. Journal of Guidance Control and Dynamics, 1982, 5(4): 448‒457. |
| [43] |
Skelton R E, Hughes P C, Hablani H B. Order reduction for models of space structures using modal cost analysis [J]. Journal of Guidance Control and Dynamics, 1982, 5(4): 351‒357. |
| [44] |
Wei J, Cao D Q, Wang L, et al. Dynamic modeling and simulation for flexible spacecraft with flexible jointed solar panels [J]. International Journal of Mechanical Sciences, 2017, 130: 558‒570. |
| [45] |
曹登庆, 刘梅, 朱东方, 空间可展桁架结构等效动力学模型研究进展与展望 [J]. 飞控与探测, 2020, 3(1): 8‒17. |
| [46] |
Cao D Q, Liu M, Zhu D F, et al. Research progress and prospect of equivalent dynamics model of space deployable truss structures [J]. Flight Control & Detection, 2020, 3(1): 8‒17. |
| [47] |
Liu F, Wang L, Jin D, et al. Equivalent micropolar beam model for spatial vibration analysis of planar repetitive truss structure with flexible joints [J]. International Journal of Mechanical Sciences, 2020, 165: 105202. |
| [48] |
Wu Y, Cao D Q, Liu M, et al. Natural characteristic and vibration analysis of nonlinear articulate d multi-beam ring structure for modeling ring truss antenna under base excitation [J]. Applied Mathematical Modelling, 2022, 108: 787‒806. |
| [49] |
Fang B, Wang Y, Zhu B, et al. 3D-spatial vibration global modes of a flexible arm-supported ring antenna and its dynamic analysis [J]. Applied Mathematical Modelling, 2023, 123: 590‒626. |
| [50] |
周志成, 董富祥. 空间大型天线多体动力学分析 [M]. 北京: 中国宇航出版社, 2015. |
| [51] |
Zhou Z C, Dong F X. Multibody dynamics analysis of large space antennas [M]. Beijing: China Astronautic Publishing House, 2015. |
| [52] |
Shabana A A. Flexible multibody dynamics: Review of past and recent developments [J]. Multibody System Dynamics, 1997, 1(2): 189‒222. |
| [53] |
Meier C, Popp A, Wall W A. Geometrically exact finite element formulationsfor slender beams: Kirchhoff-Love theory versus Simo-Reissner theory [J]. Computational Methods in Engineering, 2019, 26(1): 163‒243. |
| [54] |
Nie R, He B, Zhang L. Deployment dynamics modeling and analysis for mesh reflector antennas considering the motion feasibility [J]. Nonlinear Dynamics, 2018, 91(1): 549‒564. |
| [55] |
Li P, Liu C, Tian Q, et al. Dynamics of a deployable mesh reflector of satellite antenna: Parallel computation and deployment simulation1 [J]. ASME Journal of Computational and Nonlinear Dynamics, 2016, 11(6): 061005. |
| [56] |
Fu K, Zhao Z, Ren G X, et al. From multiscale modeling to design of synchronization mechanisms in mesh antennas [J]. Acta Astronautica, 2019, 159: 156‒165. |
| [57] |
Zhao Z, Fu K, Li M, et al. Gravity compensation system of mesh antennas for in-orbit prediction of deployment dynamics [J]. Acta Astronautica, 2020, 167: 1‒13. |
| [58] |
孙加亮, 田强, 胡海岩. 多柔体系统动力学建模与优化研究进展 [J]. 力学学报, 2019, 51(6): 1565‒1586. |
| [59] |
Sun J L, Tian Q, Hu H Y. Advances in dynamic modeling and optimization of flexible multibody systems [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1565‒1586. |
| [60] |
刘铖, 胡海岩. 基于李群局部标架的多柔体系统动力学建模与计算 [J]. 力学学报, 2021, 53(1): 213‒233. |
| [61] |
Liu C, Hu H Y. Dynamic modeling and computation for flexible multibody systems based on the local frame of Lie group [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 213‒233. |
| [62] |
Liu X, Cai G, Peng F, et al. Dynamic model and active vibration control of a membrane antenna structure [J]. Journal of Vibration and Control, 2018, 24(18): 4282‒4296. |
| [63] |
Satou Y, Furuya H. Effects of elasto-plastic behavior of crease on deployed shape of space membrane [R]. Kissimmee: 2018 AIAA Spacecraft Structures Conference, 2018. |
| [64] |
Liu C, Tian Q, Yan D, et al. Dynamic analysis of membrane systems undergoing overall motions, large deformations and wrinkles via thin shell elements of ANCF [J]. Computer Methods in Applied Mechanics and Engineering, 2013, 258: 81‒95. |
| [65] |
Yuan T, Liu Z, Zhou Y, et al. Dynamic modeling for foldable origami space membrane structure with contact-impact during deployment [J]. Multibody System Dynamics, 2020, 50(1): 1‒24. |
| [66] |
Huang Z, Li H, Deng Z, et al. Simulation and validation of space deployable membrane structures using the absolute nodal coordinate formulation [J]. Advances in Space Research, 2025, 76(4): 2104‒2122. |
| [67] |
Wang T, Wu Z, Xu M, et al. Deployment simulation of foldable membranes using absolute nodal coordinate formulation and validation [J]. AIAA Journal, 2024, 62(8): 2943‒2954. |
| [68] |
Mierunalan S, Dassanayake S P, Mallikarachchi H M Y C, et al. Simulation of ultra-thin membranes with creases [J]. International Journal of Mechanics and Materials in Design, 2023, 19(1): 73‒94. |
| [69] |
Zhao P, Liu J, Wu C, et al. Deployment analysis of membranes with creases using a nonlinear torsion spring model [J]. International Journal of Mechanical Sciences, 2023, 255: 108444. |
| [70] |
Xia Z M, Wang C G, Tan H F. Quasi-static unfolding mechanics of a creased membrane based on a finite deformation crease-beam model [J]. International Journal of Solids and Structures, 2020, 207: 104‒112. |
| [71] |
汤惠颖, 张志娟, 刘铖, 两类基于局部标架梁单元的闭锁缓解方法 [J]. 力学学报, 2021, 53(2): 482‒495. |
| [72] |
Tang H Y, Zhang Z J, Liu C, et al. Locking alleviation techniques of two types of beam elements based on the local frame formulation [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 482‒495. |
| [73] |
Aglietti G S, Langley R S, Rogers E, et al. Model building and verification for active control of microvibrations with probabilistic assessment of the effects of uncertainties [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2004, 218: 389‒399. |
| [74] |
Yu Y, Gong X, Zhang L, et al. Full-closed-loop time-domain integrated modeling method of optical satellite flywheel micro-vibration [J]. Applied Sciences, 2021, 11(3): 1328. |
| [75] |
Li L, Wang L, Yuan L, et al. Micro-vibration suppression methods and key technologies for high-precision space optical instruments [J]. Acta Astronautica, 2021, 180: 417‒428. |
| [76] |
Li L, Tan L, Kong L, et al. The influence of flywheel micro vibration on space camera and vibration suppression [J]. Mechanical Systems and Signal Processing, 2018, 100: 360‒370. |
| [77] |
Briggs H C. Integrated modeling and design of advanced optical systems [R]. Irvine: 1992 Aerospace Design Conference, 1992. |
| [78] |
刘希刚. 航天器微振动集成建模与分析方法研究 [D]. 哈尔滨: 哈尔滨工业大学 (硕士学位论文), 2018. |
| [79] |
Liu X G. Research on integrated modeling and analysis methods for spacecraft micro-vibration [D]. Harbin: Harbin Institute of Technology (Master's thesis), 2018. |
| [80] |
Masterson R A, Miller D W, Grogan R L, et al. Development and validation of reaction wheel disturbance models: Empirical model [J]. Journal of Sound and Vibration, 2002, 249(3): 575‒598. |
| [81] |
庞世伟, 郭倩蕊, 贺玮, 某遥感卫星微振动对成像质量影响分析 [J]. 航天器环境工程, 2019, 36(1): 47‒55. |
| [82] |
Pang S W, Guo Q R, He W, et al. Influence of micro-vibration on image quality of a remote sensing satellite [J]. Spacecraft Environment Engineering, 2019, 36(1): 47‒55. |
| [83] |
邹元杰, 王泽宇, 张志娟, 航天器微振动稳态时域响应分析方法 [J]. 航天器工程, 2012, 21(6): 37‒42. |
| [84] |
Zou Y J, Wang Z Y, Zhang Z J, et al. Analysis method for steady-state time-domain response of spacecraft micro-vibration [J]. Spacecraft Engineering, 2012, 21(6): 37‒42. |
| [85] |
高铎瑞, 李天伦, 孙悦, 空间激光通信最新进展与发展趋势 [J]. 中国光学, 2018, 6(11): 901‒912. |
| [86] |
Gao D R, Li T L, Sun Y, et al. Latest developments and trends of space laser communication [J]. Chinese Journal of Optics, 2018, 6(11): 901‒912. |
| [87] |
王天枢, 林鹏, 董芳, 空间激光通信技术发展现状及展望 [J]. 中国工程科学, 2020, 22(3): 92‒99. |
| [88] |
Wang T S, Lin P, Dong F, et al. Progress and prospect of space laser communication technology [J]. Strategic Study of CAE, 2020, 22(3): 92‒99. |
| [89] |
Toyoshima M. Recent trends in space laser communications for small satellites and constellations [J]. Journal of Lightwave Technology, 2021, 39(3): 693‒699. |
| [90] |
Jiang H L, Fu Q, Zhao Y W, et al. Development status and trend of space information network and laser communication [J]. Chinese Journal on Internet of Things, 2019, 3(2): 1‒8. |
| [91] |
王旭. 实践十三号卫星成功发射开启中国通信卫星高通量时代 [J]. 中国航天, 2017 (5): 13. |
| [92] |
Wang X. The successful launch of the Practice-13 satellite has opened the era of high-throughput communication satellites in China. [J]. Aerospace China, 2017 (5): 13. |
| [93] |
崔岳, 唐勇. 实践二十号卫星在轨核心试验全部完成 [J]. 国际太空, 2020, 7: 38‒41. |
| [94] |
Cui Y, Tang Y. All core experiments of the Practice-20 satellite in orbit have been completed [J]. Space International, 2020, 7: 38‒41. |
| [95] |
鲍莉娜, 叶桑, 尹家聪, 国外激光通信卫星抗微振动设计策略分析与探讨 [J]. 航天器环境工程, 2025, 42(1): 1‒6. |
| [96] |
Bao L N, Ye S, Yin J C, et al. Investigating of anti-microvibration design strategies for laser communication satellites: Insights from foreign experience [J]. Spacecraft Environment Engineering, 2025, 42(1): 1‒6. |
| [97] |
于思源. 卫星光通信瞄准捕获跟踪技术 [M]. 北京: 科学出版社, 2016. |
| [98] |
Yu S Y. Aiming, acquisition and tracking technology for satellite optical communication [M]. Beijing: Science Press, 2016. |
| [99] |
李青, 王天舒, 马兴瑞. 充液航天器液体晃动和液固耦合动力学的研究与应用 [J]. 力学进展, 2012, 42(4): 472‒481. |
| [100] |
Li Q, Wang T S, Ma X R. Research and application of liquid sloshing and liquid-solid coupling dynamics in liquid-filled spacecraft [J]. Advances in Mechanics, 2012, 42(4): 472‒481. |
| [101] |
Ibrahim R A. Liquid sloshing dynamics: Theory and applications [M]. Cambridge: Cambridge University Press, 2005. |
| [102] |
Vreeburg J P B. Dynamics and control of a spacecraft with a moving pulsating ball in a spherical cavity [J]. Acta Astronautica, 1997, 40(2‒8): 257‒274. |
| [103] |
黄华, 杨雷, 张熇, 航天器贮箱大幅液体晃动三维质心面等效模型研究 [J]. 宇航学报, 2010, 31(1): 55‒59. |
| [104] |
Huang H, Zhang L, Zhang H, et al. Research on 3D constraint surface model for large amplitude liquid sloshing on spacecraft tank [J]. Journal of Astronautics, 2010, 31(1): 55‒59. |
| [105] |
苗楠, 李俊峰, 王天舒. 横向激励下液体大幅晃动建模分析 [J]. 宇航学报, 2016, 37(3): 268‒274. |
| [106] |
Miao N, Li J F, Wang T X. Modeling analysis of large-amplitude liquid sloshing under lateral excitation [J]. Journal of Astronautics, 2016, 37(3): 268‒274. |
| [107] |
Liu F, Yue B Z, Tang Y, Deng M L. 3DOF-rigid-pendulum analogy for nonlinear liquid slosh in spherical propellant tanks [J]. Journal of Sound and Vibration, 2019, 460: 114907. |
| [108] |
Lu Y, Yue B Z, Ma B L, et al. A universal nonlinear equivalent model and its stability analysis for large amplitude liquid sloshing in rotationally symmetric tanks [J]. Nonlinear Dynamics, 2025, 113: 6031‒6047. |
| [109] |
邓明乐, 岳宝增, 黄华. 液体大幅晃动类等效力学模型研究 [J]. 宇航学报, 2016, 37(6): 631‒638. |
| [110] |
Deng M L, Yue B Z, Huang H. Study on the equivalent mechanical model for large amplitude slosh [J]. Journal of Astronautics, 2016, 37(6): 631‒638. |
| [111] |
Deng M L, Yue B Z. Nonlinear model and attitude dynamics of flexible spacecraft with large amplitude slosh [J]. Acta Astronautica, 2017, 133: 111‒120. |
| [112] |
邓明乐, 李友遐, 许宏岩, 液体非线性晃动试验与等效力学模型仿真 [J]. 中国空间科学技术, 2022, 42(6): 125‒133. |
| [113] |
Deng M L, Li Y X, Xu H Y, et al. Experiment of liquid nonlinear rotary sloshing and simulation by equivalent mechanical model [J]. Chinese Space Science and Technology, 2022, 42(6): 125‒133. |
| [114] |
吴文军, 高超南, 岳宝增, 圆柱贮箱内液体非线性稳态晃动实验及动力学特性分析 [J]. 宇航学报, 2021, 42(9): 1078‒1089. |
| [115] |
Wu W J, Gao C N, Yue B Z, et al. Experimental study and dynamic characteristic analysis of nonlinear steady state sloshing of liquid in a cylindrical tank [J]. Journal of Astonautics, 2021, 42(9): 1078‒1089. |
| [116] |
Gasbarri P, Sabatini M, Pisculli A. Dynamic modelling and stability parametric analysis of a flexible spacecraft with fuel slosh [J]. Acta Astronautica, 2016, 127: 141‒159. |
| [117] |
Allard C, Ramos M D, Schaub H. Spacecraft dynamics integrating hinged solar panels and lumped-mass fuel slosh model [R]. Long Bench: AIAA/AAS Astrodynamics Specialist Conference, 2016. |
| [118] |
Allard C, Ramos M D, Schaub H, et al. Modular software architecture for fully coupled spacecraft simulations [J]. Journal of Aerospace Information Systems, 2018, 15(12): 669‒683. |
| [119] |
Deng M L, Huang H, Li Z J, et al. Coupling dynamics of flexible spacecraft filled with liquid propellant [J]. Journal of Aerospace Engineering, 2019, 32(5): 04019077. |
| [120] |
Boley B A. Thermally induced vibrations of beams [J]. Journal of Aeronautical Sciences, 1956, 23(2): 179‒181. |
| [121] |
Augusti G. Instability of struts subject to radiant heat [J]. Meccanica, 1968, 3(3): 167‒176. |
| [122] |
Thornton E A, Foster R S. Dynamic response of rapidly heated space structures [R]. Dallas: 33rd Structures, Structural Dynamics and Materials Conference, 1992. |
| [123] |
张军徽. 空间结构热致响应主动控制的热流驱动方法和热颤振准则 [D]. 北京: 清华大学 (硕士学位论文), 2013. |
| [124] |
Zhang J W. Thermal flow driven method and thermal flutter criterion for active control of thermal response in spatial structures [D]. Beijing: Tsinghua University (Master's thesis), 2013. |
| [125] |
Yuan X D, Xiang Z H. A thermal-flutter criterion for an open thin-walled circular cantilever beam subject to solar heating [J]. Chinese Journal of Aeronautics, 2018, 31(9): 1902‒1909. |
| [126] |
Mason J B. Analysis of thermally induced structural vibrations by finite element techniques [R]. Greenbelt: NASA Goddard Space Flight Center, 1968. |
| [127] |
Xue M D, Ding Y. Two kinds of tube elements for transient thermal-structural analysis of large space structures [J]. International Journal for Numerical Methods in Engineering, 2004, 59(10): 1335‒1353. |
| [128] |
沈振兴. 基于绝对坐标的大型空间多体结构热致振动研究 [D]. 北京: 北京理工大学 (博士学位论文), 2014. |
| [129] |
Shen Z X. Research on thermally induced vibration of large space multibody structures based on absolute coordinates [D]. Beijing: Beijing Institute of Technology (Doctoral dissertation), 2014. |
| [130] |
Liu J Y, Pan K Q. Rigid‒flexible‒thermal coupling dynamic formulation for satellite and plate multibody system [J]. Aerospace Science and Technology, 2016, 52: 102‒114. |
| [131] |
Sun K P, Zhao Y H, Hu H Y. Identification of temperature-dependent thermal-structural properties via finite element model updating and selection [J]. Mechanical Systems and Signal Processing, 2015, 52: 147‒161. |
| [132] |
Fan C, Bi Y Q, Wang J, et al. Experimental investigation of heat flux characteristics on the thermally induced vibration of a slender thin-walled beam [J]. International Journal of Applied Mechanics, 2020, 12(5): 1‒21. |
| [133] |
朱浩, 刘正山, 黄志勇.考虑结构遮挡和地影效应的环形桁架天线轨道热分析 [J]. 应用力学学报, 2025, 42(3): 511‒518. |
| [134] |
Zhu H, Liu Z S, Huang Z Y. Thermal analysis of a circular truss antenna considering structural shading and ground shadow effect [J]. Chinese Journal of Applied Mechanics, 2025, 42(3): 511‒518. |
| [135] |
王宇嘉, 范叶森, 李洋, 大型空间薄膜天线在轨热致振动分析 [J]. 空间电子技术, 2025, 22(2): 57‒67. |
| [136] |
Wang Y J, Fan Y S, Li Y, et al. Analysis of thermal induced vibration of large space membrane antennas in orbit [J]. Space Electronic Technology, 2025, 22(2): 57‒67. |
| [137] |
周志成, 曲广吉. 通信卫星总体设计与动力学分析 [M]. 北京: 中国科学技术出版社, 2013. |
| [138] |
Zhou Z C, Qu G J. System design and dynamics analysis of communication satellites [M]. Beijing: China Science and Technology Press, 2013. |
| [139] |
陈呈, 刘翔. 薄膜天线航天器刚 ‒ 柔 ‒ 热耦合动力学建模与复合控制研究 [J]. 应用数学与力学, 2025, 46(3): 283‒297. |
| [140] |
Chen C, Liu X. Rigid‒flexible‒thermal coupling dynamic modeling and hybrid control of membrane antenna spacecraft [J]. Applied Mathematics and Mechanics, 2025, 46(3): 283‒297. |
| [141] |
马小飞, 李洋, 肖勇, 大型空间可展开天线反射器研究现状与展望 [J]. 空间电子技术, 2018, 15(2): 16‒26. |
| [142] |
Ma X F, Li Y, Xiao Y, et al. Development and tendency of large space deployable antenna reflector [J]. Space Electronic Technology, 2018, 15(2): 16‒26. |
| [143] |
胡海岩, 田强, 文浩, 极大空间结构在轨组装的动力学与控制 [J]. 力学进展, 2025, 55(1): 1‒29. |
| [144] |
Hu H Y, Tian Q, Wen H, et al. Dynamics and control of on-orbit assembly of ultra-large space structures [J]. Advance in Mechanics, 2025, 55(1): 1‒29. |
| [145] |
吴志刚, 蒋建平, 邬树楠, 航天结构空间组装动力学与控制研究进展 [J]. 力学进展, 2024, 54(2): 344‒388. |
| [146] |
Wu Z G, Jiang J P, Wu S N, et al. Review on dynamics and control of space structure in the process of on-orbit assembly [J]. Advance in Mechanics, 2024, 54(2): 344‒388. |
| [147] |
胡海岩, 乔栋, 李翔宇, 力学工程问题 [M]. 北京: 科学出版社, 2024. |
| [148] |
Hu H Y, Qiao D, Li X Y, et al. Engineering issues in mechanics [M]. Beijing: Science Press, 2024. |
| [149] |
陈竑宇, 陈提. 挠性航天器姿态动力学数据驱动辨识与控制 [J]. 力学学报. 2024, 56(2): 433‒445. |
| [150] |
Chen H Y, Chen T. Data-driven identification and control of flexible spacecraft attitude dynamics [J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(2): 433‒445. |
| [151] |
Dylewsky D. Data-driven methods for physics-constrained dynamical systems [D]. Seattle: University of Washington (Doctoral dissertation), 2020. |
| [152] |
张文杰, 王国新, 阎艳, 基于数字孪生和多智能体的航天器智试 [J]. 计算机集成制造系统, 2021, 27(1): 16‒33. |
| [153] |
Zhang W J, Wang G X, Yan Y, et al. Intelligent test of spacecraft based on digital twin and multi-agent systems [J]. Computer Integrated Manufacturing Systems, 2021, 27(1): 16‒33. |
| [154] |
王建军, 向永清, 何正文. 基于数字孪生的航天器系统工程模型与实现 [J]. 计算机集成制造系统, 2019, 25(6): 1348‒1360. |
| [155] |
Wang J J, Xiang Y Q, He Z W. Models and implementation of digital twin based spacecraft system engineering [J]. Computer Integrated Manufacturing Systems, 2019, 25(6): 1348‒1360. |
| [156] |
Woodward N, Riccardo B. On board estimation of unknown dynamics of flexible spacecraft [J]. Acta Astronautica, 2024, 217: 363‒381. |
国防科技工业局“十三五”民用航天预先研究项目(D020201)
/
| 〈 |
|
〉 |