地质工作的新形势新趋势与我国的新机遇新方向
杨宗喜 , 贾德龙 , 方圆 , 吴林强 , 王泉 , 毛景文
中国工程科学 ›› 2025, Vol. 27 ›› Issue (6) : 130 -142.
地质工作的新形势新趋势与我国的新机遇新方向
New Trends in Global Geological Work and New Opportunities for China
地质工作是国民经济和社会发展的重要先行性和基础性工作。当前,世界之变、时代之变、历史之变正以前所未有的方式展开,我国地质工作如何顺应变局,更好地支撑和服务经济社会发展成为当前的重大时代课题。本文研究与辨识了当前世界地质工作在资源、空间、生态、科技等方面面临的新形势,梳理总结了世界主要国家地质调查机构积极应对变局采取的措施:通过开展清洁低碳能源和关键矿产资源调查评价,满足战略性新兴产业发展需求;通过开展环境地质调查、地质灾害调查等工作,推动经济社会可持续发展;通过应用大数据、人工智能等信息技术,推动现代地质工作重塑;通过加强学科交叉融合,推动地球系统科学逐步完善。结合我国地质工作实际,提出发展建议:一是要在传统资源领域地质工作基础上,加强气候约束和地缘政治约束下的能源与矿产资源供应研究;二是要破解气候变化条件下的水资源、水生态、水灾害难题;三是要推动地质灾害调查研究支撑服务防灾减灾与国土空间规划;四是要为韧性城市建设提供系统的地质解决方案;五是要加强服务海洋强国建设的海洋地质调查研究;六是要加强保障生态安全底线的生态地质工作;七是要构建“星 ‒ 空 ‒ 地 ‒ 深”地质调查研究相结合的地质科技新体系。
Geological work is a vital precursor and foundational component of national economic and social development. In the face of unprecedented global and historical transformations, how China's geological efforts can adapt to these changes and support economic and social progress has become a major question of our time. This study analyzes the emerging global trends confronting geological work across the dimensions of resources, spatial planning, ecology, and technology. Geological survey agencies in major countries around the world are meeting the development needs of strategic emerging industries by conducting surveys and assessments of clean and low-carbon energy and critical mineral resources. Through environmental geology surveys, geological hazard investigations, and related work, they are promoting sustainable economic and social development. By applying information technologies such as big data and artificial intelligence, they are reshaping modern geological practices. Meanwhile, by strengthening interdisciplinary integration, they are advancing the Earth system science. Based on the actual geological work in China, the following development suggestions are proposed: (1) based on the traditional geological work in the field of mineral resources, strengthening the research on the supply of energy and mineral resources under the climate and geopolitical constraints; (2) solving the problems of water resources, water ecology, and water disasters under the conditions of climate change; (3) promoting geological disaster survey and research to support services for disaster prevention and mitigation and territorial spatial planning; (4) providing systematic geological solutions for the construction of resilient cities; (5) strengthening the research on marine geological survey for the construction of a strong ocean country; (6) strengthening the ecological geological surveys to guarantee the bottom line of ecological security; and (7) building a new system of geological science and technology that combines deep geological exploration and research with shallow geological process survey and research.
地质工作 / 资源安全 / 矿产勘查 / 国土空间规划 / 资源环境承载能力评价 / 生态地质 / 地球系统科学
geological work / resource security / mineral exploration / territorial spatial planning / assessment of the carrying capacity of resources and environment / ecological geology / Earth system science
| [1] |
唐金荣, 王春辉, 张福良, 全球新一轮关键矿产竞争的动力、趋势与中国应对 [J]. 中国矿业, 2025, 34(5): 1‒8. |
| [2] |
Tang J R, Wang C H, Zhang F L, et al. Global competition for critical minerals: Motivation, new trends and China's response [J]. China Mining Magazine, 2025, 34(5): 1‒8. |
| [3] |
杨宗喜, 唐金荣, 周平, 大数据时代下美国地质调查局的科学新观 [J]. 地质通报, 2013, 32(9): 1337‒1343. |
| [4] |
Yang Z X, Tang J R, Zhou P, et al. Earth science research in U.S. geological survey under the big data revolution [J]. Geological Bulletin of China, 2013, 32(9): 1337‒1343. |
| [5] |
杨宗喜, 唐金荣, 施俊法. 欧洲地质调查工作的发展方向及启示 [J]. 中国矿业, 2016, 25(4): 10‒15. |
| [6] |
Yang Z X, Tang J R, Shi J F. The development direction of the geological survey in Europe and its inspiration [J]. China Mining Magazine, 2016, 25(4): 10‒15. |
| [7] |
Kimball S, Goldhaber M, Baron J, et al. The modern geological survey; a model for research, innovation, synthesis: A USGS perspective [J]. Geological Society, London, Special Publications, 2020, 499(1): 203‒211. |
| [8] |
方克定, 彭齐鸣, 施俊法. 工业化以来地质工作的发展与演变 [J]. 国土资源, 2006 (10): 24‒29. |
| [9] |
Fang K D, Peng Q M, Shi J F. Development and evolution of geological work since industrialization [J]. Land & Resources, 2006 (10): 24‒29. |
| [10] |
张鑫刚, 李仰春, 孙仁斌. 世界主要国家地质填图现状、特点、趋势及启示 [J]. 矿产勘查, 2020, 11(2): 301‒310. |
| [11] |
Zhang X G, Li Y C, Sun R B. State, features, trends and enlightenment of geological mapping in major countries of the world [J]. Mineral Exploration, 2020, 11(2): 301‒310. |
| [12] |
王思敬. 工程地质学的任务与未来 [J]. 工程地质学报, 1999, 7(3): 195‒199. |
| [13] |
Wang S J. Tasks and future of engineering geology [J]. Journal of Engineering Geology, 1999, 7(3): 195‒199. |
| [14] |
林学钰. "地下水科学与工程"学科形成的历史沿革及其发展前景 [J]. 吉林大学学报(地球科学版), 2007, 37(2): 209‒215. |
| [15] |
Lin X Y. Historical change and prospect of discipline development of "groundwater science and engineering" [J]. Journal of Jilin University (Earth Science Edition), 2007, 37(2): 209‒215. |
| [16] |
张永双, 孙璐, 殷秀兰, 中国环境地质研究主要进展与展望 [J]. 中国地质, 2017, 44(5): 901‒912. |
| [17] |
Zhang Y S, Sun L, Yin X L, et al. Progress and prospect of research on environmental geology of China: A review [J]. Geology in China, 2017, 44(5): 901‒912. |
| [18] |
Daniele La Porta A, John Richard D, Thao Phuong F M, et al. Minerals for Climate Action: The mineral intensity of the clean energy transition (English) [R]. Washington DC: World Bank Group, 2020. |
| [19] |
Wang A J, Wang G S, Chen Q S, et al. S-curve model of relationship between energy consumption and economic development [J]. Natural Resources Research, 2015, 24(1): 53‒64. |
| [20] |
王安建, 王高尚, 周凤英. 能源和矿产资源消费增长的极限与周期 [J]. 地球学报, 2017, 38(1): 3‒10. |
| [21] |
Wang A J, Wang G S, Zhou F Y. The limits and cycles of the growth of energy and mineral resources consumption [J]. Acta Geoscientica Sinica, 2017, 38(1): 3‒10. |
| [22] |
Rockström J, Steffen W, Noone K, et al. A safe operating space for humanity [J]. Nature, 2009, 461(7263): 472‒475. |
| [23] |
Dearing J A, Wang R, Zhang K, et al. Safe and just operating spaces for regional social-ecological systems [J]. Global Environmental Change, 2014, 28: 227‒238. |
| [24] |
Fanning A L, O'Neill D W. Tracking resource use relative to planetary boundaries in a steady-state framework: A case study of Canada and Spain [J]. Ecological Indicators, 2016, 69: 836‒849. |
| [25] |
蔡玉梅. 美国国土规划及启示 [J]. 国土资源, 2003 (10): 49‒51. |
| [26] |
Cai Y M. American territorial planning and its enlightenment [J]. Land & Resources, 2003 (10): 49‒51. |
| [27] |
罗佩利, 农昌奎. 基于"双评价"的国土空间格局优化研究 [J]. 经济与社会发展研究, 2024 (22): 22‒24. |
| [28] |
Luo P L, Nong C K. Research on the optimization of land spatial pattern based on "double evaluation" [J]. Economic and Social Observation, 2024 (22): 22‒24. |
| [29] |
Lenton T M, Held H, Kriegler E, et al. Tipping elements in the Earth's climate system [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(6): 1786‒1793. |
| [30] |
Armstrong McKay D I, Staal A, Abrams J F, et al. Exceeding 1.5 ℃ global warming could trigger multiple climate tipping points [J]. Science, 2022, 377(6611): eabn7950. |
| [31] |
Cheng Q M, Roland O, Zhao M L. A new international initiative for facilitating data-driven Earth science transformation [J]. Geological Society London Special Publications, 2020, 499: 225‒240. |
| [32] |
Lebel D. Geological Survey of Canada 8.0: Mapping the journey towards predictive geoscience [J]. Geological Society, London, Special Publications, 2020, 499(1): 49‒68. |
| [33] |
Geoscience Australia. Geoscience Australia strategy 2028 applying geoscience to Australia's most important challenges [R]. Canberra: Geoscience Australia, 2019. |
| [34] |
Australian Trade and Investment Commission. Australia's critical minerals strategy [R]. Sydney: Australian Trade and Investment Commission, 2019. |
| [35] |
British Geological Survey. Gateway to the earth science strategy for the british geological survey 2019—2023 [R]. British: British Geological Survey, 2019. |
| [36] |
French Geological Survey. Science strategy for BRGM (2019 Version)—Key research priorities for the next 10 years [R]. Orléans: French Geological Survey, 2019. |
| [37] |
Bundesanstalt für Geowissenschaften und Rohstoffe. 2025+ Strategie zum nachhaltigen umgang mit den ressourcen der erde [R]. Hannover: Bundesanstalt für Geowissenschaften und Rohstoffe, 2020. |
| [38] |
Whitbread K, Kessler H, Kearsey K, et al. 3D geoscience for the UK and beyond [C]// MacCormack K E, Berg R C, Kessler H, et al. 2019 Synopsis of current three-dimensional geological mapping and modelling in Geological Survey Organisations. Edmonton:Alberta Energy Regulator/Alberta Geological Survey, 2019: 266‒277. |
| [39] |
Jan Stafleu, Michiel J, van der Meulen, et al. Systematic 3D subsurface mapping in the netherlands [C]// MacCormack K E, Berg R C, Kessler H, et al. 2019 synopsis of current three-dimensional geological mapping and modelling in Geological Survey Organisations. Edmonton:Alberta Energy Regulator/Alberta Geological Survey, 2019: 179‒190. |
| [40] |
Mielby S, Eriksson I, Diarmad S, et al. Opening up the subsurface for the cities of tomorrow The subsurface in the planning process [J]. Procedia Engineering, 2017, 209: 12‒25. |
| [41] |
Bristol S, Euliss N H, Booth J N L, et al. Science strategy for core science systems in the U.S Geological Survey, 2013—2023 [EB/OL]. (2013-02-17)[2025-09-05]. http://pubs.usgs.gov/of/2012/1093/of2012-1093.pdf. |
| [42] |
U.S. Geological Survey. U.S. Geological Survey 21st-century science strategy 2020—2030 [R]. Reston: U.S. Geological Survey, 2021. |
| [43] |
Wilson T S, Wiltermuth M T, Jenni K E, et al. Use case development for earth monitoring, analysis, and prediction (EarthMAP)—A road map for future integrated predictive science at the U.S. Geological Survey [R]. Reston: U.S. Geological Survey, 2022. |
/
| 〈 |
|
〉 |