医疗机器人关键技术研究进展及展望
Medical Robotics: Advances and Prospects in Core Technologies
医疗机器人是全球高端医疗装备的发展“高地”,与人工智能、脑机接口、新一代移动通信等前沿技术跨领域融合后成为医疗行业新质生产力的重要组成部分;把握医疗机器人关键技术研究态势,将支撑我国医疗机器人领域精准布局、提升医疗机器人产业技术竞争力。本文基于多维度的调研与评估,立足医疗机器人的发展需求,明晰了手术机器人、康复机器人、诊断机器人、其他医疗机器人的应用现状,梳理了结构设计、运动控制、感知反馈、信息处理与导航、远程通信与人机交互、人工智能辅助诊疗等医疗机器人关键技术方向的研究进展;进一步提炼出智能化与自主化、小型化与柔性化、交互多模态化与远程化、系统集成化与生态协同等医疗机器人关键技术突破方向。相关研究成果厘清了医疗机器人技术发展脉络与整体态势,为构建自主可控的医疗装备产业体系、提升医疗科技核心竞争力提供了理论支撑与决策参考。
Medical robotics are a strategic frontier in global high-end medical equipment. Integrated with advanced technologies like artificial intelligence (AI) and brain‒computer interfaces, they become a key component of new-quality productive forces in the medical industry. A comprehensive understanding of the research landscape in core technologies of medical robotics will facilitate targeted advancements in China's medical robotics industry, thereby strengthening its technological competitiveness. Through multi-dimensional analysis, this study summarizes advances in surgical, rehabilitation, diagnostic, and other medical robots, and analyzes core technologies including structural design, motion control, sensory feedback, information processing and navigation, remote communication and human‒robot interaction, and AI-assisted diagnostics. The key development directions are identified as follows: intelligent and autonomous systems, miniaturization and flexible design, multimodal interactive and remote capabilities, and system integration and ecosystem synergy. Relevant research findings have delineated the development trajectory and overall trends in medical robotics technologies, offering a theoretical foundation and decision-making support for establishing a self-sufficient and controllable medical equipment industry system, thereby enhancing the core competitiveness of medical science and technologies.
医疗机器人 / 结构设计 / 信息处理 / 远程通信 / 人机交互
medical robotics / structural design / information processing / remote communication / human‒robot interaction
| [1] |
Beasley R A. Medical robots: Current systems and research directions [J]. Journal of Robotics, 2012: 401613. |
| [2] |
VDMA Services GmbH. World robotics 2024—Service robots [EB/OL]. [2025-12-10]. https://ifr.org/img/worldrobotics/Sources___Methods_WR_2024_Service_Robots.pdf. |
| [3] |
耿熙坪, 屈航, 闫灵均, 国内外医疗机器人产业发展现况分析 [J]. 中国医学装备, 2025, 22(1): 82‒89. |
| [4] |
Geng X P, Qu H, Yan L J, et al. Analysis on the development status of medical robot industry at home and abroad [J]. China Medical Equipment, 2025, 22(1): 82‒89. |
| [5] |
黎文娟, 马泽洋, 曾磊, 国内外医疗机器人发展现状及趋势 [J]. 机器人产业, 2022 (6): 72‒86. |
| [6] |
Li W J, Ma Z Y, Zeng L, et al. Development status and trend of medical robots at home and abroad [J]. Robot Industry, 2022 (6): 72‒86. |
| [7] |
Marescaux J, Leroy J, Gagner M, et al. Transatlantic robot-assisted telesurgery [J]. Nature, 2001, 413(6854): 379‒380. |
| [8] |
Hashizume M, Tsugawa K. Robotic surgery and cancer: The present state, problems and future vision [J]. Japanese Journal of Clinical Oncology, 2004, 34(5): 227‒237. |
| [9] |
Ballantyne G H. Robotic surgery, telerobotic surgery, telepresence, and telementoring [J]. Surgical Endoscopy and Other Interventional Techniques, 2002, 16(10): 1389‒1402. |
| [10] |
Moschovas M C, Bhat S, Sandri M, et al. Comparing the approach to radical prostatectomy using the multiport da Vinci XI and da Vinci SP robots: A propensity score analysis of perioperative outcomes [J]. European Urology, 2021, 79(3): 393‒404. |
| [11] |
Corcione F, Esposito C, Cuccurullo D, et al. Advantages and limits of robot-assisted laparoscopic surgery: Preliminary experience [J]. Surgical Endoscopy and Other Interventional Techniques, 2005, 19(1): 117‒119. |
| [12] |
Robotic-assisted surgery with da Vinci systems [EB/OL]. [2025-12-10]. https://www.intuitive.com/en-us/patients/da-vinci-robotic-surgery. |
| [13] |
Chu G D, Yang X C, Zhang X, et al. Innovative integration of robotic-assisted laparoscopic telesurgery and quantum cryptography communication in urology: Clinical application and initial experience [J]. The International Journal of Medical Robotics + Computer Assisted Surgery, 2025, 21(1): e70028. |
| [14] |
Zhang Z P, Zhan W P, Tian H W, et al. An initial exploratory clinical study and outcome assessment of gastrointestinal surgeries using advanced robotic-assisted techniques [J]. Surgical Endoscopy, 2025, 39(2): 766‒775. |
| [15] |
Wang H L, Dong Z Y, Gupta R, et al. Perioperative outcomes of robot-assisted partial nephrectomy with MP1000 surgical system vs da Vinci XI surgical system and evaluation of the MP1000 learning curve [J]. Journal of Endourology, 2025, 39(10): 1018‒1027. |
| [16] |
Yi J F, Gao Z S, Huang Y J, et al. Evaluating the accuracy of a new robotically assisted system in cadaveric total knee arthroplasty procedures [J]. Journal of Orthopaedic Surgery and Research, 2024, 19(1): 354. |
| [17] |
Saeedi-Hosseiny M S, Rothenberg H G, Jadallah A L, et al. The impact of robotic surgery on reducing radiation exposure in orthopedic trauma: A meta-analysis [J]. Journal of Robotic Surgery, 2025, 19(1): 319. |
| [18] |
Samprón N, Lafuente J, Presa-Alonso J, et al. Advancing spine surgery: Evaluating the potential for full robotic automation [J]. Brain & Spine, 2025, 5: 104232. |
| [19] |
Lu Q, Sun Z J, Zhang J L, et al. A novel remote-controlled vascular interventional robotic system based on hollow ultrasonic motor [J]. Micromachines, 2022, 13(3): 410. |
| [20] |
Zhao Y, Mei Z Y, Luo X X, et al. Remote vascular interventional surgery robotics: A literature review [J]. Quantitative Imaging in Medicine and Surgery, 2022, 12(4): 2552‒2574. |
| [21] |
Gunduz S, Albadawi H, Oklu R. Robotic devices for minimally invasive endovascular interventions: A new dawn for interventional radiology [J]. Advanced Intelligent Systems, 2021, 3(2): 2170021. |
| [22] |
Britz G W, Panesar S S, Falb P, et al. Neuroendovascular-specific engineering modifications to the CorPath GRX robotic system [J]. Journal of Neurosurgery, 2019, 133(6): 1830‒1836. |
| [23] |
Durand E, Sabatier R, Smits P C, et al. Evaluation of the R-One robotic system for percutaneous coronary intervention: The R-EVOLUTION study [J]. EuroIntervention, 2023, 18(16): 1339‒1347. |
| [24] |
Fernandez-Bussy S, Chandra N C, Koratala A, et al. Robotic-assisted bronchoscopy: A narrative review of systems [J]. Journal of Thoracic Disease, 2024, 16(8): 5422‒5434. |
| [25] |
de Moura D T H, Aihara H, Jirapinyo P, et al. Robot-assisted endoscopic submucosal dissection versus conventional ESD for colorectal lesions: Outcomes of a randomized pilot study in endoscopists without prior ESD experience [J]. Gastrointestinal Endoscopy, 2019, 90(2): 290‒298. |
| [26] |
Yang X X, Fu S C, Ji R, et al. A novel flexible auxiliary single-arm transluminal endoscopic robot facilitates endoscopic submucosal dissection of gastric lesions [J]. Surgical Endoscopy, 2022, 36(7): 5510‒5517. |
| [27] |
Ji R, Yang J L, Yang X X, et al. Simplified robot-assisted endoscopic submucosal dissection for esophageal and gastric lesions: A randomized controlled porcine study [J]. Gastrointestinal Endoscopy, 2022, 96(1): 140‒147. |
| [28] |
Gauhar V, Giulioni C, Gadzhiev N, et al. An update of in vivo application of artificial intelligence and robotics for percutaneous nephrolithotripsy: Results from a systematic review [J]. Current Urology Reports, 2023, 24(6): 271‒280. |
| [29] |
Hsu P K, Chuang L C, Wu Y C. Electromagnetic navigation-guided preoperative localization of small malignant pulmonary tumors [J]. The Annals of Thoracic Surgery, 2020, 109(5): 1566‒1573. |
| [30] |
段星光, 何睿, 温浩, 穿刺手术机器人技术发展综述 [J]. 机器人外科学杂志(中英文), 2025, 6(7): 1069‒1079. |
| [31] |
Duan X G, He R, Wen H, et al. Review of the development of percutaneous surgical robot [J]. Chinese Journal of Robotic Surgery, 2025, 6(7): 1069‒1079. |
| [32] |
Doidge N. The brain that changes itself: Stories of personal triumph from the frontiers of brain science [M]. London: Penguin Books, 2007. |
| [33] |
Rizzolatti G, Fadiga L, Gallese V, et al. Premotor cortex and the recognition of motor actions [J]. Cognitive Brain Research, 1996, 3(2): 131‒141. |
| [34] |
丁逸苇, 涂利娟, 刘怡希, 可穿戴式下肢外骨骼康复机器人研究进展 [J]. 机器人, 2022, 44(5): 522‒532. |
| [35] |
Ding Y W, Tu L J, Liu Y X, et al. Progress of wearable lower-limb exoskeleton rehabilitation robots [J]. Robot, 2022, 44(5): 522‒532. |
| [36] |
Reinkensmeyer D J, Marchal-Crespo L, Dietz V. Neurorehabilitation technology [M]. Cham: Springer Cham, 2016. |
| [37] |
Lorach H, Galvez A, Spagnolo V, et al. Walking naturally after spinal cord injury using a brain-spine interface [J]. Nature, 2023, 618(7963): 126‒133. |
| [38] |
Biasiucci A, Leeb R, Iturrate I, et al. Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke [J]. Nature Communications, 2018, 9: 2421. |
| [39] |
Willett F R, Kunz E M, Fan C F, et al. A high-performance speech neuroprosthesis [J]. Nature, 2023, 620(7976): 1031‒1036. |
| [40] |
Willett F R, Avansino D T, Hochberg L R, et al. High-performance brain-to-text communication via handwriting [J]. Nature, 2021, 593(7858): 249‒254. |
| [41] |
Mashayekhi H, Nazari M, Jafarinejad F, et al. Deep reinforcement learning-based control of chemo-drug dose in cancer treatment [J]. Computer Methods and Programs in Biomedicine, 2024, 243: 107884. |
| [42] |
姚玉峰, 裴硕, 郭军龙, 上肢康复机器人研究综述 [J]. 机械工程学报, 2024, 60(11): 115‒134. |
| [43] |
Yao Y F, Pei S, Guo J L, et al. Review of research on upper-limb rehabilitation training robots [J]. Journal of Mechanical Engineering, 2024, 60(11): 115‒134. |
| [44] |
Liu J S, He Y, Yang J T, et al. Design and analysis of a novel 12-DOF self-balancing lower extremity exoskeleton for walking assistance [J]. Mechanism and Machine Theory, 2022, 167: 104519. |
| [45] |
Cui C K, Bian G B, Hou Z G, et al. Simultaneous recognition and assessment of post-stroke hemiparetic gait by fusing kinematic, kinetic, and electrophysiological data [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26(4): 856‒864. |
| [46] |
何峰, 何蓓蓓, 王仲朋, 脑 ‒ 机交互运动训练的神经反馈方法及康复应用 [J]. 中国生物医学工程学报, 2021, 40(6): 719‒730. |
| [47] |
He F, He B B, Wang Z P, et al. Motor training and its rehabilitation application based on the neurofeedback methods of brain‒computer interaction [J]. Chinese Journal of Biomedical Engineering, 2021, 40(6): 719‒730. |
| [48] |
明东, 蒋晟龙, 王忠鹏, 基于人机信息交互的助行外骨骼机器人技术进展 [J]. 自动化学报, 2017, 43(7): 1089‒1100. |
| [49] |
Ming D, Jiang S L, Wang Z P, et al. Review of walk assistant exoskeleton technology: Human‒machine interaction [J]. Acta Automatica Sinica, 2017, 43(7): 1089‒1100. |
| [50] |
Ha K H, Yoo J, Li S P, et al. Full freedom-of-motion actuators as advanced haptic interfaces [J]. Science, 2025, 387(6741): 1383‒1390. |
| [51] |
Hankov N, Caban M, Demesmaeker R, et al. Augmenting rehabilitation robotics with spinal cord neuromodulation: A proof of concept [J]. Science Robotics, 2025, 10(100): eadn5564. |
| [52] |
Sun Y X, Zhang W, Gu J N, et al. Magnetically driven capsules with multimodal response and multifunctionality for biomedical applications [J]. Nature Communications, 2024, 15: 1839. |
| [53] |
Esteva A, Kuprel B, Novoa R A, et al. Dermatologist-level classification of skin cancer with deep neural networks [J]. Nature, 2017, 542(7639): 115‒118. |
| [54] |
Qiu D F, Cheng Y H, Wang X S. Medical image super-resolution reconstruction algorithms based on deep learning: A survey [J]. Computer Methods and Programs in Biomedicine, 2023, 238: 107590. |
| [55] |
Topol E J. High-performance medicine: The convergence of human and artificial intelligence [J]. Nature Medicine, 2019, 25(1): 44‒56. |
| [56] |
Dadkhah M, Mehraeen M, Rahimnia F, et al. Use of Internet of things for chronic disease management: An overview [J]. Journal of Medical Signals & Sensors, 2021, 11(2): 138‒157. |
| [57] |
Sim J A, Huang X L, Horan M R, et al. Natural language processing with machine learning methods to analyze unstructured patient-reported outcomes derived from electronic health records: A systematic review [J]. Artificial Intelligence in Medicine, 2023, 146: 102701. |
| [58] |
Hannun A Y, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network [J]. Nature Medicine, 2019, 25(1): 65‒69. |
| [59] |
Saini S K, Gupta R. Artificial intelligence methods for analysis of electrocardiogram signals for cardiac abnormalities: State-of-the-art and future challenges [J]. Artificial Intelligence Review, 2022, 55(2): 1519‒1565. |
| [60] |
HD现代防疫机器人D1入选韩国公共采购院创新产品 [EB/OL]. (2024-01-31)[2025-12-10]. http://www.hyundai-robotics.cn/publicity/publicity1/64. |
| [61] |
Disinfection Robot D1 of HD Hyundai was selected as an innovative product by the Public Procurement Service of the Republic of Korea [EB/OL]. (2024-01-31)[2025-12-10]. http://www.hyundai-robotics.cn/publicity/publicity1/64. |
| [62] |
锐曼消毒服务机器人 [EB/OL]. [2025-12-10]. http://reemanbot.aichinaw.com/. |
| [63] |
REEMAN's disinfection robot [EB/OL]. [2025-12-10]. http://reemanbot.aichinaw.com/. |
| [64] |
马瀚. 医用病人转运机器人的研究与设计 [D]. 长春: 长春工业大学(硕士学位论文), 2023. |
| [65] |
Ma H. Research and design of medical patient transfer robot [D]. Changchun: Changchun University of Technology (Master's thesis), 2023. |
| [66] |
何瑛, 李伦. 机器人在护理领域中的应用进展 [J]. 中华护理杂志, 2018, 53(9): 1140‒1143. |
| [67] |
He Y, Li L. Application progress of robot in nursing field [J]. Chinese Journal of Nursing, 2018, 53(9): 1140‒1143. |
| [68] |
刘海清. 医疗配送机器人的设计与实现 [D]. 南京: 东南大学(硕士学位论文), 2022. |
| [69] |
Liu H Q. Design and implementation of medical distribution robot [D]. Nanjing: Southeast University (Master's thesis), 2022. |
| [70] |
Yang J L, Li X X, Runciman M, et al. A novel, soft, cable-driven parallel robot for minimally invasive surgeries based on folded pouch actuators [J]. Applied Sciences, 2024, 14(10): 4095. |
| [71] |
Yang Y K, Zhang H F, Kong K, et al. Design and validation a minimally invasive robotic surgical instrument with decoupled pose and multi-DOF [J]. Journal of Robotic Surgery, 2024, 18(1): 312. |
| [72] |
Padasdao B, Batsaikhan Z, Lafreniere S, et al. Modeling and operator control of a robotic tool for bidirectional manipulation in targeted prostate biopsy [R]. Georgia: 2022 International Symposium on Medical Robotics (ISMR), 2022. |
| [73] |
朱姿娜, 张宇鹏, 曾阳浩, 一种基于蜂巢结构的颗粒阻塞变刚度软体手指 [J]. 机器人, 2024, 46(6): 652‒662. |
| [74] |
Zhu Z N, Zhang Y P, Zeng Y H, et al. A variable-stiffness soft finger based on particle jamming with honeycomb structure [J]. Robot, 2024, 46(6): 652‒662. |
| [75] |
Li M, Ishii M, Taylor R H. Spatial motion constraints using virtual fixtures generated by anatomy [J]. IEEE Transactions on Robotics, 2007, 23(1): 4‒19. |
| [76] |
江国豪, 周圆圆, 张芳敏, 关节联动的单孔手术机器人运动解耦方法 [J]. 机器人, 2020, 42(4): 469‒476. |
| [77] |
Jiang G H, Zhou Y Y, Zhang F M, et al. Motion decoupling method for a single-port surgical robot with joint linkage [J]. Robot, 2020, 42(4): 469‒476. |
| [78] |
Zhong F X, Liu Y H. Integrated planning and control of robotic surgical instruments for task autonomy [J]. The International Journal of Robotics Research, 2023, 42(7): 504‒536. |
| [79] |
Sajadi S M, Mahdioun S H, Ghavifekr A A. Design of mechanical structure and tracking control system for 5 DOF surgical robot [R]. Mashhad: 2013 21st Iranian Conference on Electrical Engineering (ICEE), 2013. |
| [80] |
赵鹏羽. 遥操作腹部超声机器人共享柔顺控制研究 [D]. 大连: 大连海事大学(硕士学位论文), 2023. |
| [81] |
Zhao P Y. Research on shared compliance control of telerobotic abdominal ultrasound [D]. Dalian: Dalian Maritime University (Master's thesis), 2023. |
| [82] |
Wang G W, Xu Q S. Design and precision position/force control of a piezo-driven microinjection system [J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(4): 1744‒1754. |
| [83] |
Zhao C, Li T L, Fan H L, et al. Step-coated FBG and runway-shaped beam 6-D F/T sensor with dynamic self-fault-tolerant for orthopedic surgery robot [J]. The International Journal of Robotics Research, 2025, 44(12): 2073‒2102. |
| [84] |
Zhao H, Chen W C, Li Y H, et al. In situ structural-functional synchronous dissection of dynamic neuromuscular system via an integrated multimodal wearable patch [J]. Science Advances, 2025, 11(2): eads1486. |
| [85] |
Bai H D, Li S, Barreiros J, et al. Stretchable distributed fiber-optic sensors [J]. Science, 2020, 370(6518): 848‒852. |
| [86] |
Gu G Y, Zhang N B, Xu H P, et al. A soft neuroprosthetic hand providing simultaneous myoelectric control and tactile feedback [J]. Nature Biomedical Engineering, 2023, 7(4): 589‒598. |
| [87] |
Zhao Z H, Li W L, Li Y Y, et al. Embedding high-resolution touch across robotic hands enables adaptive human-like grasping [J]. Nature Machine Intelligence, 2025, 7(6): 889‒900. |
| [88] |
Li S L, Wang J, Dai R, et al. RoboNurse-VLA: Robotic scrub nurse system based on vision‒language‒action model [R]. Hangzhou: 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2025. |
| [89] |
Zhang Y C, Shen Z R, Jiao R S. Segment anything model for medical image segmentation: Current applications and future directions [J]. Computers in Biology and Medicine, 2024, 171: 108238. |
| [90] |
Chua M M J, Vasudeva V S, Lu Y. Intraoperative ultrasound in spinal surgery [J]. Journal of Visualized Experiments, 2022 (186): e58080. |
| [91] |
Sarwin G, Carretta A, Staartjes V, et al. Live image-based neurosurgical guidance and roadmap generation using unsupervised embedding [R]. Cham: Information Processing in Medical Imaging, 2023. |
| [92] |
Goreczny S, Dryzek P, Moszura T, et al. 3D image fusion for live guidance of stent implantation in aortic coarctation-magnetic resonance imaging and computed tomography image overlay enhances interventional technique [J]. Advances in Interventional Cardiology, 2017, 3: 269‒272. |
| [93] |
Bryan-Kinns N, Blanford A, Curzon P, et al. People and computers XX—Engage [M]. London: Springer London, 2007. |
| [94] |
Marttos A, Kuchkarian F M, Palaios E, et al. Surgical telepresence: The usability of a robotic communication platform [J]. World Journal of Emergency Surgery, 2012, 7(1): S11. |
| [95] |
Marescaux J, Leroy J, Rubino F, et al. Transcontinental robot-assisted remote telesurgery: Feasibility and potential applications [J]. Annals of Surgery, 2002, 235(4): 487‒492. |
| [96] |
刘荣, 赵国栋, 孙玉宁, 5G远程机器人手术动物实验研究 [J]. 中华腔镜外科杂志(电子版), 2019, 12(1): 45‒48. |
| [97] |
Liu R, Zhao G D, Sun Y N, et al. Experimental study on 5G remote robot surgery in animals [J]. Chinese Journal of Laparoscopic Surgery (Electronic Edition), 2019, 12(1): 45‒48. |
| [98] |
李爱民, 李进华, 李建民, 国产机器人妙手S系统远程手术实验研究 [J]. 腹部外科, 2016, 29(6): 473‒477. |
| [99] |
Li A M, Li J H, Li J M, et al. Experiments of telesurgery using domestic surgical robotic MicroHand S system [J]. Journal of Abdominal Surgery, 2016, 29(6): 473‒477. |
| [100] |
Thai M T, Phan P T, Hoang T T, et al. Advanced intelligent systems for surgical robotics [J]. Advanced Intelligent Systems, 2020, 2(8): 1900138. |
| [101] |
Long Y H, Wei W, Huang T, et al. Human-in-the-loop embodied intelligence with interactive simulation environment for surgical robot learning [J]. IEEE Robotics and Automation Letters, 2023, 8(8): 4441‒4448. |
| [102] |
Zhu X R, Xie Y X, Liu Y, et al. Knowledge graph-guided retrieval augmented generation [EB/OL]. (2025-02-08)[2025-12-10]. https://arxiv.org/abs/2502.06864. |
| [103] |
韩晓光, 朱小龙, 姜宇桢, 人工智能与机器人辅助医学发展研究 [J]. 中国工程科学, 2023, 25(5): 43‒54. |
| [104] |
Han X G, Zhu X L, Jiang Y Z, et al. Development strategies for artificial intelligence and robotics in medicine [J]. Strategic Study of CAE, 2023, 25(5): 43‒54. |
中国工程院咨询项目“医疗机器人关键技术及核心零部件战略研究”(2023-XBZD-19)
/
| 〈 |
|
〉 |