量子网络系统研究进展与关键技术分析
Research Progress and Key Technologies of Quantum Network Systems
量子信息领域的迅速发展为现代信息技术带来了新的机遇与挑战,其中的热门研究方向之一即量子网络,旨在利用量子力学的基本特性实现长距离的(安全)通信任务,或通过分布式计算提供优于经典计算网络的计算能力,相关研究对推动量子信息的实用化具有重要意义。本文根据量子网络应用场景和技术手段的差异性,从量子密码网络、量子云计算网络、量子隐形传态网络3个细分类别出发,全面梳理了国内外的研究进展及发展挑战,以便掌握量子网络系统的最新发展态势;结合量子网络的实施情况,阐述了量子网络系统发展中亟待攻克的链路建立、信息传输、网络协议、物理硬件等关键技术。综合来看,量子网络仍处于初级发展阶段,当前需积极应对挑战并把握机遇,以增强我国前沿领域的科技硬实力。研究建议,加强基础硬件设施研发投入、重视量子网络理论研究、加强交叉学科研究和相关人才培养,以促进我国量子网络系统的发展。
The rapid development of quantum information has brought new opportunities and challenges to modern information technologies. As one of the popular research directions in the field of quantum information, quantum networks aim to utilize the fundamental properties of quantum mechanics to achieve long-distance (secure) communications or provide computational capabilities superior to classical computing networks through distributed computing. The study of quantum networks holds great significance in advancing the practicality of quantum information. To gain a comprehensive understanding of the development trajectory of quantum networks, this study categorizes quantum networks into three types: quantum cryptography, quantum cloud computing, and quantum teleportation networks, based on different application scenarios and technical approaches. It provides comprehensive reviews of both domestic and international research progress and the challenges faced in each aspect. Furthermore, in conjunction with the practical implementation of quantum networks, the key technologies that need to be overcome in the development of quantum network systems, involving link establishment, information transmission, networking protocols, and physical hardware, are summarized. Overall, the development of quantum networks is still in the primary stage. At this stage, actively addressing challenges and seizing opportunities are of great significance to enhance the technological prowess of China. Therefore, to promote the development of quantum network systems in China, suggestions are proposed from three aspects: strengthening investment in the research and development of fundamental hardware infrastructure, attaching importance to the theoretical research of quantum networks, and enhancing interdisciplinary research and talent cultivation.
量子信息 / 量子网络 / 量子密码网络 / 量子云计算网络 / 量子隐形传态网络
quantum information / quantum network / quantum cryptography network / quantum cloud computing network / quantum teleportation network
/
〈 |
|
〉 |