资源类型

期刊论文 117

年份

2023 18

2022 12

2021 13

2020 4

2019 8

2018 3

2017 17

2016 5

2015 5

2014 3

2013 3

2012 2

2011 4

2010 1

2008 2

2007 3

2006 1

2005 3

2004 3

2002 1

展开 ︾

关键词

多晶硅 3

快子 3

超光速 3

晶体硅太阳电池 2

相对论 2

量子力学 2

9 %~12 % Cr 钢 1

&prime 1

&gamma 1

AD9954 1

DVD 1

M23C6 碳化物 1

QCA);可逆逻辑;DG门;二进制减法器;量子成本 1

TRIP钢 1

n-Si 1

三元乙丙橡胶 1

三氣氢硅法 1

下地幔 1

不经意传输;后量子;格公钥;带差错学习;通用可复合 1

展开 ︾

检索范围:

排序: 展示方式:

Design and mechanism insight on SiC quantum dots sensitized inverse opal TiO with superior photocatalytic

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 1913-1924 doi: 10.1007/s11705-023-2350-8

摘要: The combination of SiC quantum dots sensitized inverse opal TiO2 photocatalyst is designed in this work and then applied in wastewater purification under simulated sunlight. From various spectroscopic techniques, it is found that electrons transfer directionally from SiC quantum dots to inverse opal TiO2, and the energy difference between their conduction/valence bands can reduce the recombination rate of photogenerated carriers and provide a pathway with low interfacial resistance for charge transfer inside the composite. As a result, a typical type-II mechanism is proved to dominate the photoinduced charge transfer process. Meanwhile, the composite achieves excellent photocatalytic performances (the highest apparent kinetic constant of 0.037 min–1), which is 6.2 times (0.006 min–1) and 2.1 times (0.018 min–1) of the bare inverse opal TiO2 and commercial P25 photocatalysts. Therefore, the stability and non-toxicity of SiC quantum dots sensitized inverse opal TiO2 composite enables it with great potential in practical photocatalytic applications.

关键词: inverse opal TiO2     silicon carbide quantum dots     quantum dot sensitized photocatalyst     type-II charge transfer route    

Improving hole transfer of boron nitride quantum dots modified PDI for efficient photodegradation

《化学科学与工程前沿(英文)》 2023年 第17卷 第11期   页码 1718-1727 doi: 10.1007/s11705-023-2319-7

摘要: In recent years, organic photocatalyst under visible-light absorption has shown significant potential for solving environmental problems. However, it is still a great challenge for constructing a highly active organic photocatalyst due to the low separation efficiency of photogenerated carriers. Herein, an effective and robust photocatalyst perylene-3,4,9,10-tetracarboxylic diamide/boron nitride quantum dots (PDI/BNQDs), consisting of self-assemble PDI with π–π stacking structure and BNQDs, has been constructed and researched under visible light irradiation. The PDI/BNQDs composite gradually increases organic pollutant photodegradation with the loading amount of BNQDs. With 10 mL of BNQDs solution added (PDI/BNQDs-10), the organic pollutant photodegradation performance reaches a maximum, about 6.16 times higher with methylene blue and 1.68 times higher with ciprofloxacin than that of pure PDI supramolecular. The enhancement is attributed to improved separation of photogenerated carriers from self-assembled PDI by BNQDs due to their preeminent ability to extract holes. This work is significant for the supplement of PDI supramolecular composite materials. We believe that this photocatalytic design is capable of expanding organic semiconductors’ potential for their applications in photocatalysis.

关键词: PDI     boron nitride     quantum dots     photocatalysis     hole transfer    

Enhanced charge extraction for all-inorganic perovskite solar cells by graphene oxide quantum dots modified

《化学科学与工程前沿(英文)》 2023年 第17卷 第5期   页码 516-524 doi: 10.1007/s11705-022-2238-z

摘要: All-inorganic cesium lead bromide (CsPbBr3) perovskite solar cells have been attracting growing interest due to superior performance stability and low cost. However, low light absorbance and large charge recombination at TiO2/CsPbBr3 interface or within CsPbBr3 film still prevent further performance improvement. Herein, we report devices with high power conversion efficiency (9.16%) by introducing graphene oxide quantum dots (GOQDs) between TiO2 and perovskite layers. The recombination of interfacial radiation can be effectively restrained due to enhanced charge transfer capability. GOQDs with C-rich active sites can involve in crystallization and fill within the CsPbBr3 perovskite film as functional semiconductor additives. This work provides a promising strategy to optimize the crystallization process and boost charge extraction at the surface/interface optoelectronic properties of perovskites for high efficient and low-cost solar cells.

关键词: all inorganic     perovskite solar cells     graphene oxide quantum dots     high performance     stability    

Silicon carbide waste as a source of mixture materials for cement mortar

Zhengwu Jiang, Qiang Ren, Haoxin Li, Qing Chen

《环境科学与工程前沿(英文)》 2017年 第11卷 第5期 doi: 10.1007/s11783-017-0974-y

摘要: This paper presents an investigation of the feasibility of recycling silicon carbide waste (SCW) as a source of mixture materials in the production of cement mortar. Mortars with SCW were prepared by replacing different amounts of cement with SCW, and the properties of the resulting mortars, such as the fluidity, strength and shrinkage, were studied in this work. Thermogravimetry-differential scanning calorimetry and scanning electron microscopy were employed to understand the reasons for the property changes of the mortars. The results indicate that SCW decreases the initial and 1-h fluidity of fresh mortar but improves the loss of fluidity. The mortar with SCW exhibits a lower strength at 3 d and 7 d but a higher strength at 28 d and 56 d compared to the control. The shrinkage rate of cement mortar with SCW shows an obvious decrease as the replacement ratio increases. In addition, the content of calcium hydroxide in hardened paste also shows that SCW has some impact on the hydration of the cement-SCW system. The microstructures of the hardened paste also show evidence for a later strength change of mortar containing SCW. This work provides a strategic reference for possibly applying SCW as a mixture material in the production of cement mortar.

关键词: Silicon carbide waste     Cement mortar     Fluidity     Strength     Shrinkage    

Enhanced permeability and biofouling mitigation of forward osmosis membranes via grafting graphene quantumdots

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1470-1483 doi: 10.1007/s11705-023-2329-5

摘要: In this paper, graphene oxide quantum dots with amino groups (NH2-GOQDs) were tailored to the surface of a thin-film composite (TFC) membrane surface for optimizing forward osmosis (FO) membrane performance using the amide coupling reaction. The results jointly demonstrated hydrophilicity and surface roughness of the membrane enhanced after grafting NH2-GOQDs, leading to the optimized affinity and the contact area between the membrane and water molecules. Therefore, grafting of the membrane with a concentration of 100 ppm (TFC-100) exhibited excellent permeability performance (58.32 L·m–2·h–1) compared with TFC membrane (16.94 L·m–2·h–1). In the evaluation of static antibacterial properties of membranes, TFC-100 membrane destroyed the cell morphology of Escherichia coli (E. coli) and reduced the degree of bacterial adsorption. In the dynamic biofouling experiment, TFC-100 membrane showed a lower flux decline than TFC membrane. After the physical cleaning, the flux of TFC-100 membrane could recover to 96% of the initial flux, which was notably better than that of TFC membrane (63%). Additionally, the extended Derjaguin–Landau–Verwey–Overbeek analysis of the affinity between pollutants and membrane surface verified that NH2-GOQDs alleviates E. coli contamination of membrane. This work highlights the potential applications of NH2-GOQDs for optimizing permeability and biofouling mitigation of FO membranes.

关键词: forward osmosis membrane     graphene oxide quantum dots     graft modification     anti-fouling membrane     XDLVO theory    

Glyco-functionalised quantum dots and their progress in cancer diagnosis and treatment

Jayshree Ashree, Qi Wang, Yimin Chao

《化学科学与工程前沿(英文)》 2020年 第14卷 第3期   页码 365-377 doi: 10.1007/s11705-019-1863-7

摘要: Despite all major breakthroughs in recent years of research, we are still unsuccessful to effectively diagnose and treat cancer that has express and metastasizes. Thus, the development of a novel approach for cancer detection and treatment is crucial. Recent progress in Glyconanotechnology has allowed the use of glycans and lectins as bio-functional molecules for many biological and biomedical applications. With the known advantages of quantum dots (QDs) and versatility of carbohydrates and lectins, Glyco-functionalised QD is a new prospect in constructing biomedical imaging platform for cancer behaviour study as well as treatment. In this review, we aim to describe the current utilisation of Glyco-functionalised QDs as well as their future prospective to interpret and confront cancer.

关键词: carbohydrate     leptin     glyco-functionalised QD     bioimaging     cancer diagnosis and treatment    

Long-lasting photoluminescence quantum yield of cesium lead halide perovskite-type quantum dots

Yonghyun Kim, Huiwen Liu, Yi Liu, Boa Jin, Hao Zhang, Wenjing Tian, Chan Im

《化学科学与工程前沿(英文)》 2021年 第15卷 第1期   页码 187-197 doi: 10.1007/s11705-020-1931-z

摘要: Cesium lead halide perovskite (CsPbX , X= Cl, Br, I) quantum dots (QDs) and their partly Mn -substituted QDs (CsPb Mn X ) attract considerable attention owing to their unique photoluminescence (PL) efficiencies. The two types of QDs, having different PL decay dynamics, needed to be further investigated in a form of aggregates to understand their solid-state-induced exciton dynamics in conjunction with their behaviors upon degradation to achieve practical applications of those promising QDs. However, thus far, these QDs have not been sufficiently investigated to obtain deep insights related to the long-term stability of their PL properties as aggregated solid-states. Therefore, in this study, we comparatively examined CsPbX - and CsPb Mn X -type QDs stocked for>50 d under dark ambient conditions by using excitation wavelength-dependent PL quantum yield and time-resolved PL spectroscopy. These investigations were performed with powder samples in addition to solutions to determine the influence of the inter-QD interaction of the aged QD aggregates on their radiative decays. It turns out that the Mn -substituted QDs exhibited long-lasting PL quantum efficiencies, while the unsubstituted CsPbX -type QDs exhibited a drastic reduction of their PL efficiencies. And the obtained PL traces were clearly sensitive to the sample status. This is discussed with the possible interaction depending on the size and distance of the QD aggregates.

关键词: quantum dots     cesium lead halide perovskite     time-resolved photoluminescence     PL quantum yield     QD aggregates    

Roles of glutathione and L-cysteine in the biomimetic green synthesis of CdSe quantum dots

Ling-Li Li, Yin-Hua Cui, Jie-Jie Chen, Han-Qing Yu

《环境科学与工程前沿(英文)》 2017年 第11卷 第6期 doi: 10.1007/s11783-017-0948-0

摘要: Biological synthesis of quantum dots (QDs) as an environmental-friendly and facile preparation method has attracted increasing interests. However, it is difficult to distinguish the roles of bio-thiols in QDs synthesis process because of the complex nature in organisms. In this work, the CdSe QDs synthesis conditions in organisms were reconstructed by using a simplified in vitro approach to uncover the roles of two small bio-thiols in the QDs formation. CdSe QDs were synthesized with glutathione (GSH) and L-cysteine (Cys) respectively. Compared with Cys at the same molar concentration, the CdSe QDs synthesized by GSH had a larger and broader particle size distribution with improved optical properties and crystal structure. Furthermore, quantum chemical calculations indicate that the stronger Cd2+ binding capacity of GSH contributed a lot to the CdSe QDs formation despite of the greater capability Cys for selenite reduction. This work clearly demonstrates the different roles of small thiols in the Cd2+ stabilization in the environment and biomimetic QDs synthesis process.

关键词: CdSe     Quantum dots (QDs)     Biomimetic synthesis     Bio-thiols     Glutathione (GSH)     Cysteine (Cys)    

CuO/zeolite catalyzed oxidation of gaseous toluene under microwave heating

Longli BO, Jianbo LIAO, Yucai ZHANG, Xiaohui WANG, Quan YANG

《环境科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 395-402 doi: 10.1007/s11783-012-0417-8

摘要: The development of a combined process of catalytic oxidation and microwave heating for treatment of toluene waste gas was described in this work. Toluene, a typical toxic volatile organic compound, was oxidized through a fixed bed reaction chamber containing zeolite-supported copper oxide (CuO/zeolite) catalyst mixed with silicon carbide (SiC), an excellent microwave-absorbing material. The target compound was efficiently degraded on the surface of the catalyst at high reaction temperature achieved by microwave-heated SiC. A set of experimental parameters, such as microwave power, air flow and the loading size of CuO etc., were investigated, respectively. The study demonstrated these parameters had critical impact on toluene degradation. Under optimal condition, 92% toluene was removed by this combined process, corresponding to an 80%–90% TOC removal rate. Furthermore, the catalyst was highly stable even after eight consecutive 6-h runs. At last, a hypothetical degradation pathway of toluene was proposed based on the experimental data obtained from gas chromatography-mass spectrum and Fourier transform infrared spectroscopy analyses.

关键词: microwave     catalytic oxidation     CuO/zeolite catalyst     silicon carbide (SiC)     toluene    

Water-dispersible nano-pollutions reshape microbial metabolism in type-specific manners: A metabolic and bacteriological investigation in

《环境科学与工程前沿(英文)》 2022年 第16卷 第9期 doi: 10.1007/s11783-022-1548-1

摘要:

• Water-dispersible nano-pollutions exhibit type-specific toxic effects on E. coli.

关键词: Nano-toxicity     Nano-plastics     Quantum dots     Microbial metabolite     Metabolic dysregulation    

Organic conjugated polymers and polymer dots as photocatalysts for hydrogen production

《能源前沿(英文)》 2021年 第15卷 第1期   页码 667-677 doi: 10.1007/s11708-021-0767-7

摘要: Owing to the outstanding characteristics of tailorable electronic and optical properties, semiconducting polymers have attracted considerable attention in recent years. Among them, organic polymer dots process large breadth of potential synthetic diversity are the representative of photocatalysts for hydrogen production, which presents both an opportunity and a challenge. In this mini-review, first, the organic polymer photocatalysts were introduced. Then, recent reports on polymer dots which showed a superior photocatalytic activity and a robust stability under visible-light irradiation, for hydrogen production were summarized. Finally, challenges and outlook on using organic polymer dots-based photocatalysts from hydrogen production were discussed.

关键词: polymer dots (Pdots)     photocatalysis     hydrogen production    

量子计算研究现状与未来发展

李晓巍,付祥,燕飞,钟有鹏,陆朝阳,张君华,贺煜,尉石,鲁大为,辛涛,陈济雷,林本川,张振生,刘松,陈远珍,俞大鹏

《中国工程科学》 2022年 第24卷 第4期   页码 133-144 doi: 10.15302/J-SSCAE-2022.04.016

摘要: Silicon quantum electronics [J]. Reviews of Modern Physics , 2013 , 85 3 : 961 .">45]。Silicon CMOS architecture for a spin-based quantum computer [J].A programmable two-qubit quantum processor in silicon [J]. Nature , 2018 , 555 : 633 ‒ 637 .Universal control of a six-qubit quantum processor in silicon [EBOL]. 2022-02-18 [ 2022-05-15 ].Operation of a silicon quantum processor unit cell above one kelvin [J].

关键词: 量子计算     量子算法     量子测控系统     量子软件     超导量子计算     分布式量子计算     囚禁离子量子计算     硅基量子计算     光量子计算     中性原子量子计算     金刚石氮空位色心     核磁共振量子计算     自旋波量子计算     拓扑量子计算    

Ultrathin microcrystalline hydrogenated Si/Ge alloyed tandem solar cells towards full solar spectrum conversion

Yu Cao, Xinyun Zhu, Xingyu Tong, Jing Zhou, Jian Ni, Jianjun Zhang, Jinbo Pang

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 997-1005 doi: 10.1007/s11705-019-1906-0

摘要: Thin film solar cells have been proved the next generation photovoltaic devices due to their low cost, less material consumption and easy mass production. Among them, micro-crystalline Si and Ge based thin film solar cells have advantages of high efficiency and ultrathin absorber layers. Yet individual junction devices are limited in photoelectric conversion efficiency because of the restricted solar spectrum range for its specific absorber. In this work, we designed and simulated a multi-junction solar cell with its four sub-cells selectively absorbing the full solar spectrum including the ultraviolet, green, red as well as near infrared range, respectively. By tuning the Ge content, the record efficiency of 24.80% has been realized with the typical quadruple junction structure of a-Si:H/a-Si Ge :H/µc-Si:H/µc-Si Ge :H. To further reduce the material cost, thickness dependent device performances have been conducted. It can be found that the design of total thickness of 4 m is the optimal device design in balancing the thickness and the . While the design of ultrathin quadruple junction device with total thickness of 2 m is the optimized device design regarding cost and long-term stability with a little bit more reduction in . These results indicated that our solar cells combine the advantages of low cost and high stability. Our work may provide a general guidance rule of utilizing the full solar spectrum for developing high efficiency and ultrathin multi-junction solar cells.

关键词: thin films     solar cells     quadruple junction solar cell     amorphous silicon     silicon germanium alloy     quantum efficiency    

Carbon dots-based fluorescence sensor for two-photon imaging of pH in diabetic mice

《化学科学与工程前沿(英文)》 2023年 第17卷 第3期   页码 298-306 doi: 10.1007/s11705-022-2212-9

摘要: Herein, a reversible pH fluorescent sensor was developed using caffeic acid as the precursor by one-step solvothermal synthesis method. The carbon dots-based sensor (CA-CDs) exhibited pH-dependent increase in fluorescence intensity and showed linear relationship in the range of pH 6.60 and 8.00. Notably, the fluorescence sensor has a reversible response to pH change. Finally, the CA-CDs has been successfully applied for two-photon imaging of the pH in liver and kidney of diabetic mice. Imaging results showed that the pH value in kidney of diabetic mice was lower than that of the normal mice, while the pH value in liver of diabetic mice was almost the same as that of the normal mice. The present study provides a simple analytical method for pH detection suitable for in vivo.

关键词: carbon dots     two-photon imaging     pH     diabetic mice    

氧化锆量子点用于非易失性电阻式随机存取存储器 Regular Papers

Xiang-lei HE, Rui-jie TANG, Feng YANG, Mayameen S. KADHIM, Jie-xin WANG, Yuan PU, Dan WANG

《信息与电子工程前沿(英文)》 2019年 第20卷 第12期   页码 1698-1705 doi: 10.1631/FITEE.1900363

摘要: 提出一种利用氧化锆量子点作为有源层的非易失性电阻式随机存取器。通过旋涂法制备Ag(上)/ZrO2(有源层)/Ti(下)典型的三明治结构存储器件。该优化器件具有较高高/低电阻差(约10 Ω),良好循环性能(循环数大于100),较低转化电流(约1 μA)。通过原子力显微镜和扫描电子显微镜观察ZrO2有源层表面形貌和堆积状态。实验结果表明,ZrO2有源层紧密堆积,且由于ZrO2量子点分布均匀,ZrO2有源层粗糙度较低(Ra=4.49 nm)。分析了Ag/ZrO2/Ti器件导电机理,并研究银离子导电丝和氧空位对电阻开关记忆行为的影响。该研究为忆阻器材料开发提供了一种简单方案。

关键词: 氧化锆量子点;电阻开关;存储器件;旋涂法    

标题 作者 时间 类型 操作

Design and mechanism insight on SiC quantum dots sensitized inverse opal TiO with superior photocatalytic

期刊论文

Improving hole transfer of boron nitride quantum dots modified PDI for efficient photodegradation

期刊论文

Enhanced charge extraction for all-inorganic perovskite solar cells by graphene oxide quantum dots modified

期刊论文

Silicon carbide waste as a source of mixture materials for cement mortar

Zhengwu Jiang, Qiang Ren, Haoxin Li, Qing Chen

期刊论文

Enhanced permeability and biofouling mitigation of forward osmosis membranes via grafting graphene quantumdots

期刊论文

Glyco-functionalised quantum dots and their progress in cancer diagnosis and treatment

Jayshree Ashree, Qi Wang, Yimin Chao

期刊论文

Long-lasting photoluminescence quantum yield of cesium lead halide perovskite-type quantum dots

Yonghyun Kim, Huiwen Liu, Yi Liu, Boa Jin, Hao Zhang, Wenjing Tian, Chan Im

期刊论文

Roles of glutathione and L-cysteine in the biomimetic green synthesis of CdSe quantum dots

Ling-Li Li, Yin-Hua Cui, Jie-Jie Chen, Han-Qing Yu

期刊论文

CuO/zeolite catalyzed oxidation of gaseous toluene under microwave heating

Longli BO, Jianbo LIAO, Yucai ZHANG, Xiaohui WANG, Quan YANG

期刊论文

Water-dispersible nano-pollutions reshape microbial metabolism in type-specific manners: A metabolic and bacteriological investigation in

期刊论文

Organic conjugated polymers and polymer dots as photocatalysts for hydrogen production

期刊论文

量子计算研究现状与未来发展

李晓巍,付祥,燕飞,钟有鹏,陆朝阳,张君华,贺煜,尉石,鲁大为,辛涛,陈济雷,林本川,张振生,刘松,陈远珍,俞大鹏

期刊论文

Ultrathin microcrystalline hydrogenated Si/Ge alloyed tandem solar cells towards full solar spectrum conversion

Yu Cao, Xinyun Zhu, Xingyu Tong, Jing Zhou, Jian Ni, Jianjun Zhang, Jinbo Pang

期刊论文

Carbon dots-based fluorescence sensor for two-photon imaging of pH in diabetic mice

期刊论文

氧化锆量子点用于非易失性电阻式随机存取存储器

Xiang-lei HE, Rui-jie TANG, Feng YANG, Mayameen S. KADHIM, Jie-xin WANG, Yuan PU, Dan WANG

期刊论文