资源类型

期刊论文 134

会议视频 2

会议信息 1

年份

2023 16

2022 9

2021 13

2020 10

2019 7

2018 9

2017 10

2016 7

2015 4

2014 3

2013 3

2012 4

2011 9

2010 7

2009 7

2008 4

2007 2

2006 6

2004 1

2003 1

展开 ︾

关键词

原子层沉积 2

地震预测 2

汶川地震 2

湍流边界层 2

直接数值模拟 2

相干结构 2

(GaxIn1−x)2O3薄膜;带隙可调谐;磁控溅射 1

3D支架平台 1

4D打印 1

5G 1

Electron 1

Photo-emission 1

field-emission 1

n-Si 1

三维 1

三维光制造 1

下穿 1

临震信号 1

亚分级 1

展开 ︾

检索范围:

排序: 展示方式:

Preparation and photocatalytic kinetics of nano-ZnO powders by precipitation stripping process

ZHANG Dongxiang, XUE Min, XU Hang, XU Wenguo, TARASOV V

《化学科学与工程前沿(英文)》 2008年 第2卷 第3期   页码 319-324 doi: 10.1007/s11705-008-0051-y

摘要: Ultra-fine zinc oxalate powders were prepared through a precipitation stripping method with bis(2-ethylhexyl) phosphate (HDEHP) diluted by tetrachloride carbon as the extractant, and oxalic acid ethanol aqueous solution as the re-extractant and precipitator. Zinc oxide powders were obtained by decomposing zinc oxalate powders at 450°C. The prepared zinc oxide powders were characterized by transmission electron microscope (TEM), Scanning electron microscope (SEM), Thermogravimetric analysis (TG), X-ray diffraction (XRD) and Fourier transmission infrared (FT-IR) spectrum. The photocatalytic performance of methylene blue by zinc oxide was studied based on the Langmuir model and Photo-Layer model. The results show that some zinc oxide powders were micro-multipore materials with hexagonal crystal. The particle size was around 32 nm. The photocatalytic process was the control step in the chemical reaction. The photo catalytic process followed pseudo-first order kinetics and •OH concentration inside the photo-layer in different reaction condition were calculated according to the Photo-Layer model.

关键词: 2-ethylhexyl     micro-multipore     Photo-Layer     hexagonal     methylene    

Experimental and computational assessment of 1,4-Dioxane degradation in a photo-Fenton reactive ceramic

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期 doi: 10.1007/s11783-020-1341-y

摘要:

• 1,4-Dioxane was degraded via the photo-Fenton reactive membrane filtration.

关键词: Photo-Fenton     Ceramic membrane     1     4-Dioxane     Goethite    

Selective reduction of NO by photo-SCR with ammonia in an annular fixed-film photoreactor

YiangChen CHOU, Young KU

《环境科学与工程前沿(英文)》 2012年 第6卷 第2期   页码 149-155 doi: 10.1007/s11783-010-0296-9

摘要: Gaseous NO was photocatalytically reduced at room temperature by photo-assisted selective catalytic reduction (photo-SCR) with ammonia over TiO in this study. NO reduction efficiency and N selectivity were determined from gases composition at the outlet stream of photoreactor. Effect of operating conditions, e.g. light intensity and inlet concentrations of ammonia and oxygen, on the NO reduction efficiency and N selectivity were discussed to determine the feasible operating condition for photocatalytic reduction of NO. Experimental results showed that selective catalytic reduction of NO with ammonia over TiO in the presence of oxygen was a spontaneous reaction in dark. The photoirradiation on the TiO surface caused remarkable photocatalytic reduction of NO to form N , NO , and N O under 254 nm UV illuminations, while almost 90% of N selectivity was achieved in this study. The ammonia and oxygen molecules played the roles of reductant and oxidant for NO reduction and active sites regeneration, respectively. The reduction of NO was found to be increased with the increase of inlet ammonia and oxygen concentrations until specific concentrations because of the limited active sites on the surface of TiO . The kinetic model proposed in this study can be used to reasonably describe the reaction mechanism of photo-SCR.

关键词: photo-SCR     photocatalysis     NO reduction     Eley-Rideal model    

Lignin-based electrospun nanofiber membrane decorated with photo-Fenton Ag@MIF-100(Fe) heterojunctions

《化学科学与工程前沿(英文)》 2023年 第17卷 第7期   页码 930-941 doi: 10.1007/s11705-023-2309-9

摘要: Membrane technology for wastewater remediation has aroused wide interest owing to its unique properties and potential applications. However, it remains challenging to explore green, efficient and robust membrane material and technique for complex wastewater treatment. Herein, we proposed using a simple electrospinning and in situ seeding method to fabricate a lignin-based electrospun nanofiber membrane (LENM) decorated with photo-Fenton Ag@MIL-100(Fe) heterojunctions for efficient separation of oil/water emulsions and degradation of organic dye. Thanks to the embedded lignin in LENM, an ultrahigh MIL-100(Fe) loading (53 wt %) with good wettability and high porosity was obtained. As a result, the hybrid Ag@MIL-100(Fe)/LENM exhibited excellent oil/water emulsions separation efficiency (more than 97%) without a compromise of water flux. Moreover, the hybrid membrane showed an excellent dye removal with degradation of 99% methylene blue within 30 min under illumination, which is attributed to a synergy of dye adsorption/enrichment and photo-Fenton catalytic degradation from Ag@MIL-100(Fe). Therefore, the lignin-based photo-Fenton hybrid membrane can lay the foundation for the preparation and application of green, sustainable and versatile membrane materials and technologies for efficient complex wastewater remediation.

关键词: lignin     electrospinning     heterojunctions     photo-Fenton catalysis     wastewater remediation    

Solar fuel from photo-thermal catalytic reactions with spectrum-selectivity: a review

Sanli TANG, Jie SUN, Hui HONG, Qibin LIU

《能源前沿(英文)》 2017年 第11卷 第4期   页码 437-451 doi: 10.1007/s11708-017-0509-z

摘要: Solar fuel is one of the ideal energy sources in the future. The synergy of photo and thermal effects leads to a new approach to higher solar fuel production under relatively mild conditions. This paper reviews different approaches for solar fuel production from spectrum-selective photo-thermal synergetic catalysis. The review begins with the meaning of synergetic effects, and the mechanisms of spectrum-selectivity and photo-thermal catalysis. Then, from a technical perspective, a number of experimental or theoretical works are sorted by the chemical reactions and the sacrificial reagents applied. In addition, these works are summarized and tabulated based on the operating conditions, spectrum-selectivity, materials, and productivity. A discussion is finally presented concerning future development of photo-thermal catalytic reactions with spectrum-selectivity.

关键词: photo-thermal catalysis     spectrum-selectivity     solar fuel     full-spectrum    

Hypoxia-induced activity loss of a photo-responsive microtubule inhibitor azobenzene combretastatin A4

Yang An, Chao Chen, Jundong Zhu, Pankaj Dwivedi, Yanjun Zhao, Zheng Wang

《化学科学与工程前沿(英文)》 2020年 第14卷 第5期   页码 880-888 doi: 10.1007/s11705-019-1864-6

摘要: The conformation-dependent activity of azobenzene combretastatin A4 (Azo-CA4) provides a unique approach to reduce the side-effects of chemotherapy, due to the light-triggered conformation transition of its azobenzene moiety. Under hypoxic tumor microenvironment, however, the high expression of azoreductase can reduce azobenzene to aniline. It was postulated that the Azo-CA4 might be degraded under hypoxia, resulting in the decrease of its anti-tumor activity. The aim of this study was to verify such hypothesis in HeLa cells . The quantitative drug concentration analysis shows the ratiometric formation of degradation end-products, confirming the bioreduction of Azo-CA4. The tubulin staining study indicates that Azo-CA4 loses the potency of switching off microtubule dynamics under hypoxia. Furthermore, the cell cycle analysis shows that the ability of Azo-CA4 to induce mitotic arrest is lost at low oxygen content. Therefore, the cytotoxicity of Azo-CA4 is compromised under hypoxia. In contrast, combretastatin A4 as a positive control maintains the potency to inhibit tubulin polymerization and break down the nuclei irrespective of light irradiation and oxygen level. This work highlights the influence of hypoxic tumor microenvironment on the anti-tumor potency of Azo-CA4, which should be considered during the early stage of designing translational Azo-CA4 delivery systems.

关键词: hypoxia     microtubule inhibitor     drug delivery     azo-combretastatin A4     photo-responsive    

Cyanobacterial photo-driven mixotrophic metabolism and its advantages for biosynthesis

Ni Wan,Mary Abernathy,Joseph Kuo-Hsiang Tang,Yinjie J. Tang,Le You

《化学科学与工程前沿(英文)》 2015年 第9卷 第3期   页码 308-316 doi: 10.1007/s11705-015-1521-7

摘要: Cyanobacterium offers a promising chassis for phototrophic production of renewable chemicals. Although engineered cyanobacteria can achieve similar product carbon yields as heterotrophic microbial hosts, their production rate and titer under photoautotrophic conditions are 10 to 100 folds lower than those in fast growing Cyanobacterial factories face three indomitable bottlenecks. First, photosynthesis has limited ATP and NADPH generation rates. Second, CO fixation by ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) has poor efficiency. Third, CO mass transfer and light supply are deficient within large photobioreactors. On the other hand, cyanobacteria may employ organic substrates to promote phototrophic cell growth, N fixation, and metabolite synthesis. The photo-fermentations show enhanced photosynthesis, while CO loss from organic substrate degradation can be reused by the Calvin cycle. In addition, the plasticity of cyanobacterial pathways (e.g., oxidative pentose phosphate pathway and the TCA cycle) has been recently revealed to facilitate the catabolism. The use of cyanobacteria as “green ” could be a promising route to develop robust photo-biorefineries.

关键词: CO2 mass transfer     N2 fixation     photosystem     RuBisCO     the TCA cycle    

Chemically reactive solute transfer in a boundary layer slip flow along a stretching cylinder

Swati Mukhopadhyay

《化学科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 385-391 doi: 10.1007/s11705-011-1101-4

摘要: This paper presents the distribution of a solute undergoing a first order chemical reaction in an axisymmetric laminar boundary layer flow along a stretching cylinder. Velocity slip condition at the boundary is used instead of no-slip condition. Similarity transformations are used to convert the partial differential equations corresponding to momentum and concentration into highly nonlinear ordinary differential equations. Numerical solutions of these equations are obtained by the shooting method. The velocity decreases with increasing slip parameter. The skin friction as well as the mass transfer rate at the surface is larger for a cylinder than for a flat plate.

关键词: boundary layer     stretching cylinder     partial slip     mass transfer     similarity solution    

Review: Tip-based vibrational spectroscopy for nanoscale analysis of emerging energy materials

Amun JARZEMBSKI, Cedric SHASKEY, Keunhan PARK

《能源前沿(英文)》 2018年 第12卷 第1期   页码 43-71 doi: 10.1007/s11708-018-0524-8

摘要: Vibrational spectroscopy is one of the key instrumentations that provide non-invasive investigation of structural and chemical composition for both organic and inorganic materials. However, diffraction of light fundamentally limits the spatial resolution of far-field vibrational spectroscopy to roughly half the wavelength. In this article, we thoroughly review the integration of atomic force microscopy (AFM) with vibrational spectroscopy to enable the nanoscale characterization of emerging energy materials, which has not been possible with far-field optical techniques. The discussed methods utilize the AFM tip as a nanoscopic tool to extract spatially resolved electronic or molecular vibrational resonance spectra of a sample illuminated by a visible or infrared (IR) light source. The absorption of light by electrons or individual functional groups within molecules leads to changes in the sample’s thermal response, optical scattering, and atomic force interactions, all of which can be readily probed by an AFM tip. For example, photothermal induced resonance (PTIR) spectroscopy methods measure a sample’s local thermal expansion or temperature rise. Therefore, they use the AFM tip as a thermal detector to directly relate absorbed IR light to the thermal response of a sample. Optical scattering methods based on scanning near-field optical microscopy (SNOM) correlate the spectrum of scattered near-field light with molecular vibrational modes. More recently, photo-induced force microscopy (PiFM) has been developed to measure the change of the optical force gradient due to the light absorption by molecular vibrational resonances using AFM’s superb sensitivity in detecting tip-sample force interactions. Such recent efforts successfully breech the diffraction limit of light to provide nanoscale spatial resolution of vibrational spectroscopy, which will become a critical technique for characterizing novel energy materials.

关键词: vibrational spectroscopy     atomic force microscopy     photo-thermal induced resonance     scanning near-field optical microscopy     tip-enhanced Raman spectroscopy     photo-induced force microscopy     molecular resonances     surface phonon polaritons     energy materials    

Modeling nanostructured catalyst layer in PEMFC and catalyst utilization

Jiejing ZHANG, Pengzhen CAO, Li XU, Yuxin WANG

《化学科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 297-302 doi: 10.1007/s11705-011-1201-1

摘要: A lattice model of the nanoscaled catalyst layer structure in proton exchange membrane fuel cells (PEMFC) was established by Monte Carlo method. The model takes into account all the four components in a typical PEMFC catalyst layer: platinum (Pt), carbon, ionomer and pore. The elemental voxels in the lattice were set fine enough so that each average sized Pt particulate in Pt/C catalyst can be represented. Catalyst utilization in the modeled catalyst layer was calculated by counting up the number of facets of Pt voxels where “three phase contact” are met. The effects of some factors, including porosity, ionomer content, Pt/C particle size and Pt weight percentage in the Pt/C catalyst, on catalyst utilization were investigated and discussed.

关键词: catalyst layer     PEM fuel cell     lattice model     Monte Carlo method     catalyst utilization    

Crystallographic orientation effect on cutting-based single atomic layer removal

Wenkun XIE, Fengzhou FANG

《机械工程前沿(英文)》 2020年 第15卷 第4期   页码 631-644 doi: 10.1007/s11465-020-0599-x

摘要: The ever-increasing requirements for the scalable manufacturing of atomic-scale devices emphasize the significance of developing atomic-scale manufacturing technology. The mechanism of a single atomic layer removal in cutting is the key basic theoretical foundation for atomic-scale mechanical cutting. Material anisotropy is among the key decisive factors that could not be neglected in cutting at such a scale. In the present study, the crystallographic orientation effect on the cutting-based single atomic layer removal of monocrystalline copper is investigated by molecular dynamics simulation. When undeformed chip thickness is in the atomic scale, two kinds of single atomic layer removal mechanisms exist in cutting-based single atomic layer removal, namely, dislocation motion and extrusion, due to the differing atomic structures on different crystallographic planes. On close-packed crystallographic plane, the material removal is dominated by the shear stress-driven dislocation motion, whereas on non-close packed crystallographic planes, extrusion-dominated material removal dominates. To obtain an atomic, defect-free processed surface, the cutting needs to be conducted on the close-packed crystallographic planes of monocrystalline copper.

关键词: ACSM     single atomic layer removal mechanism     crystallographic orientation effect     mechanical cutting     Manufacturing III    

组织工程和给药技术中的三维光制造 Review

Rúben F. Pereira, Paulo J. Bártolo

《工程(英文)》 2015年 第1卷 第1期   页码 90-112 doi: 10.15302/J-ENG-2015015

摘要:

组织工程中最有前景的方法就是将生物材料、细胞和生物活性分子结合加入人工的模拟环境,用以准确地模拟人体组织修复环境,并刺激组织修复和再生。这个环境必须在细胞或亚细胞尺度上模拟出尽可能接近原生细胞外基质的主要特性,只有这样此方法才会在临床应用上有效。光制造技术通过多层工艺,如对光敏预聚物的选区光交联反应,构建包含精确结构和多相材料组合的环境。细胞和治疗分子可以包含在初始水凝胶前体的溶液中,并加工成三维(3D)结构。近来,光制造也已被开发用来动态调节水凝胶的实时特性,加强控制细胞寿命和生物活性物质的传递。本文聚焦于利用3D光制造技术为组织再生和给药技术生产先进结构的相关研究,同时介绍了目前最先进的光制造技术,重点放在控制细胞生物活性因子分布形式的工作原理和生物制造方法上。因光制造技术具有工艺快速、时空控制、高分辨率和高精度等特性,故其在复杂的3D结构设计中扮演着重要角色。这种技术同样能够为组织再生构建适当的环境,并可调节治疗方法的实施状况。

关键词: 三维光制造     生物材料     组织工程     给药    

Effect of a less permeable stronger soil layer on the stability of non-homogeneous unsaturated slopes

Nabarun DEY, Aniruddha SENGUPTA

《结构与土木工程前沿(英文)》 2020年 第14卷 第6期   页码 1462-1475 doi: 10.1007/s11709-020-0674-8

摘要: Slope failure occurs due to an increase in the saturation level and a subsequent decrease in matric suction in unsaturated soil. This paper presents the results of a series of centrifuge experiments and numerical analyses on a 55° inclined unsaturated sandy slope with less permeable, stronger silty sand layer inclusion within it. It is observed that a less permeable, stronger silty sand layer in an otherwise homogeneous sandy soil slope hinders the infiltration of water. The water content of the slope just above the stronger layer increases significantly, compared to elsewhere. No shear band is found to initiate in a homogeneous sandy soil slope, whereas for a non-homogeneous slope, they initiate just above the less pervious, stronger layer. A discontinuity of the shear zone is also observed for the case of a non-homogeneous soil slope. The factor of safety of a non-homogeneous, unsaturated soil slope decreases because of the less permeable, stronger layer. It decreases significantly if this less permeable, stronger soil layer is located near the toe of the slope.

关键词: non-homogeneous slope     stronger soil layer     factor of safety     centrifuge model test     unsaturated soils    

Numerical investigation of the effectiveness of effusion cooling for plane multi-layer systems with different

Dieter BOHN, Robert KREWINKEL

《能源前沿(英文)》 2009年 第3卷 第4期   页码 406-413 doi: 10.1007/s11708-009-0041-x

摘要: Within Collaborative Research Center (SFB) 561 “Thermally Highly Loaded, Porous and Cooled Multi-Layer Systems for Combined Cycle Power Plants” at RWTH Aachen University, an effusion-cooled multi-layer plate configuration is investigated numerically by the application of a three-dimensional in-house fluid flow and heat transfer solver, CHTflow. CHTflow is a conjugate code, which yields information on the temperature distribution in the solid body. This enables a detailed discussion of the effects of a change in materials. The geometrical set-up and the fluid flow conditions derive from modern gas turbine combustion chambers and bladings. Within the SFB, two different multi-layer systems, one consisting of substrate made of CMSX-4 (a single-crystal super-alloy), an MCrAlY-bondoat and a ZrO thermal barrier coating (TBC), and the other consisting of a NiAl-alloy and a graded bondcoat/TBC, have been investigated. The grading will increase the life-span of the TBC as it can better compensate the different thermal expansion coefficients of different materials. The main focus in this study is on the different substrate materials, because the thermal conductivity of the NiAl is considerably higher than that of CMSX-4, which leads to different temperature profiles in the components. The numerical grid for the simulations contains the coolant supply (plenum), the solid body for the conjugate calculations, and the main flow area on the plate. The effusion-cooling is realized by finest drilled shaped holes with a diameter of 0.2mm. The investigation is concentrated on a cooling hole geometry with a laterally widened fan-shaped outlet, contoured throughout, and one without lateral widening that is only shaped in the TBC-region of the system. Two blowing ratios, =0.28 and =0.48, are investigated, both for a hot gas Mach number of 0.25. The results for the lower blowing ratio and the fully contoured hole are discussed as well as those of the higher blowing ratio and the non-laterally widened hole. These represent two characteristic cases.

关键词: conjugate calculation     effectiveness of effusion cooling     multi-layer systems     CMSX-4     NiAl-FG75    

The influence of manufacturing parameters and adding support layer on the properties of Zirfon

Li XU,Yue YU,Wei LI,Yan YOU,Wei XU,Shaoxing ZHANG

《化学科学与工程前沿(英文)》 2014年 第8卷 第3期   页码 295-305 doi: 10.1007/s11705-014-1433-y

摘要: The composite separator comprising of polysulfone and zirconia was prepared by phase inversion precipitation technique. The influence of manufacturing parameters on its properties was investigated, and the results show that the manufacturing parameters affect the ionic resistance and maximum pore size significantly. A modified composite separator with a support layer was prepared to enhance the tensile strength of separator. By adding support layer, the tensile strength of the separator increases from 1.85 MPa to 13.66 MPa. In order to evaluate the practical applicability of the composite separator, a small-scale industrial electrolytic experiment was conducted to investigate the changes of cell voltage, gas purity and separator stability. The results show that the modified composite separator has a smaller cell voltage and a higher H purity than the asbestos separator, and are promising material for industrial hydrogen production.

关键词: separator     alkaline water electrolysis     manufacturing parameters     support layer    

标题 作者 时间 类型 操作

Preparation and photocatalytic kinetics of nano-ZnO powders by precipitation stripping process

ZHANG Dongxiang, XUE Min, XU Hang, XU Wenguo, TARASOV V

期刊论文

Experimental and computational assessment of 1,4-Dioxane degradation in a photo-Fenton reactive ceramic

期刊论文

Selective reduction of NO by photo-SCR with ammonia in an annular fixed-film photoreactor

YiangChen CHOU, Young KU

期刊论文

Lignin-based electrospun nanofiber membrane decorated with photo-Fenton Ag@MIF-100(Fe) heterojunctions

期刊论文

Solar fuel from photo-thermal catalytic reactions with spectrum-selectivity: a review

Sanli TANG, Jie SUN, Hui HONG, Qibin LIU

期刊论文

Hypoxia-induced activity loss of a photo-responsive microtubule inhibitor azobenzene combretastatin A4

Yang An, Chao Chen, Jundong Zhu, Pankaj Dwivedi, Yanjun Zhao, Zheng Wang

期刊论文

Cyanobacterial photo-driven mixotrophic metabolism and its advantages for biosynthesis

Ni Wan,Mary Abernathy,Joseph Kuo-Hsiang Tang,Yinjie J. Tang,Le You

期刊论文

Chemically reactive solute transfer in a boundary layer slip flow along a stretching cylinder

Swati Mukhopadhyay

期刊论文

Review: Tip-based vibrational spectroscopy for nanoscale analysis of emerging energy materials

Amun JARZEMBSKI, Cedric SHASKEY, Keunhan PARK

期刊论文

Modeling nanostructured catalyst layer in PEMFC and catalyst utilization

Jiejing ZHANG, Pengzhen CAO, Li XU, Yuxin WANG

期刊论文

Crystallographic orientation effect on cutting-based single atomic layer removal

Wenkun XIE, Fengzhou FANG

期刊论文

组织工程和给药技术中的三维光制造

Rúben F. Pereira, Paulo J. Bártolo

期刊论文

Effect of a less permeable stronger soil layer on the stability of non-homogeneous unsaturated slopes

Nabarun DEY, Aniruddha SENGUPTA

期刊论文

Numerical investigation of the effectiveness of effusion cooling for plane multi-layer systems with different

Dieter BOHN, Robert KREWINKEL

期刊论文

The influence of manufacturing parameters and adding support layer on the properties of Zirfon

Li XU,Yue YU,Wei LI,Yan YOU,Wei XU,Shaoxing ZHANG

期刊论文