Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2018, Volume 4, Issue 6 doi: 10.1016/j.eng.2018.09.009

Engineered Functional Surfaces by Laser Microprocessing for Biomedical Applications

a School of Mechanical Engineering and Automation, Beihang University, Beijing 100083, China

b Hefei Innovation Research Institute, Beihang University, Hefei 230013, China

c Department of Oncology, Center of Excellence, BOE Hefei Digital Hospital Co., Ltd., Hefei 230013, China

d Beijing Long March Space Vehicle Research Institute, First Academy of the China Aerospace Corporation, Beijing 100076, China

e National Engineering Laboratory of Additive Manufacturing for Large Metallic Components, Beihang University, Beijing 100083, China

# These authors contributed equally to this work

Received: 2018-04-25 Revised: 2018-06-12 Accepted: 2018-09-18 Available online: 2018-09-25

Next Previous

Abstract

Metallic biomaterials are increasingly being used in various medical applications due to their high strength, fracture resistance, good electrical conductivity, and biocompatibility. However, their practical applications have been largely limited due to poor surface performance. Laser microprocessing is an advanced method of enhancing the surface-related properties of biomaterials. This work demonstrates the capability of laser microprocessing for biomedical metallic materials including magnesium and titanium alloys, with potential applications in cell adhesion and liquid biopsy. We investigate laser-material interaction, microstructural evolution, and surface performance, and analyze cell behavior and the surface-enhanced Raman scattering (SERS) effect. Furthermore, we explore a theoretical study on the laser microprocessing of metallic alloys that shows interesting results with potential applications. The results show that cells exhibit good adhesion behavior at the surface of the laser-treated surface, with a preferential direction based on the textured structure. A significant SERS enhancement of 6×103 can be obtained at the laser-textured surface during Raman measurement.

Figures

Fig.1

Fig.2

Fig.3

Fig.4

Fig.5

Fig.6

Fig.7

Fig.8

Fig.9

Fig.10

Fig.11

References

[ 1 ] Pan F, Gao S, Chen C, Song C, Zeng F. Recent progress in resistive random access memories: materials, switching mechanisms, and performance. Mater Sci Eng Rep 2014;83:1–59. link1

[ 2 ] Xiong Y, Li H, Wang P, Liu P, Yan Y. Improved cell adhesion of poly(amino acid) surface by cyclic phosphonate modification for bone tissue engineering. J Appl Polym Sci 2018;135(21):46226. link1

[ 3 ] Escobar Ivirico JL, Bhattacharjee M, Kuyinu E, Nair LS, Laurencin CT. Regenerative engineering for knee osteoarthritis treatment: biomaterials and cell-based technologies. Engineering 2017;3(1):16–27. link1

[ 4 ] Guan Y, Zhou W, Zheng H. Effect of laser surface melting on corrosion behaviour of AZ91D Mg alloy in simulated-modified body fluid. J Appl Electrochem 2009;39(9):1457–64. link1

[ 5 ] Korhonen E, Riikonen J, Xu W, Lehto V, Kauppinen A. Cytotoxicity of mesoporous silicon microparticles with different surface modifications on ARPE-19 cells. Acta Ophthalmol 2014;92(S253):3257. link1

[ 6 ] Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005;26 (18):3995–4021. link1

[ 7 ] Lo Celso C. Revealing the inner workings of human HSC adhesion. Blood 2017;129(8):921–2. link1

[ 8 ] Diener A, Nebe B, Lüthen F, Becker P, Beck U, Neumann HG, et al. Control of focal adhesion dynamics by material surface characteristics. Biomaterials 2005;26(4):383–92. link1

[ 9 ] Won JE, Yun YR, Jang JH, Yang SH, Kim JH, Chrzanowski W, et al. Multifunctional and stable bone mimic proteinaceous matrix for bone tissue engineering. Biomaterials 2015;56:46–57. link1

[10] Lee JY, Shah SS, Zimmer CC, Liu GY, Revzin A. Use of photolithography to encode cell adhesive domains into protein microarrays. Langmuir 2008;24 (5):2232–9. link1

[11] Javaherian S, O’Donnell KA, McGuigan AP. A fast and accessible methodology for micro-patterning cells on standard culture substrates using ParafilmTM inserts. PLoS One 2011;6(6):e20909. link1

[12] Ross AM, Jiang Z, Bastmeyer M, Lahann J. Physical aspects of cell culture substrates: topography, roughness, and elasticity. Small 2012;8(3):336–55. link1

[13] Martínez-Calderon M, Manso-Silván M, Rodríguez A, Gómez-Aranzadi M, García-Ruiz JP, Olaizola SM, et al. Surface micro- and nano-texturing of stainless steel by femtosecond laser for the control of cell migration. Sci Rep 2016;6:36296. link1

[14] Cunha A, Zouani OF, Plawinski L, Botelho do Rego AM, Almeida A, Vilar R, et al. Human mesenchymal stem cell behavior on femtosecond laser-textured Ti6Al-4V surfaces. Nanomedicine 2015;10(5):725–39. link1

[15] Dumas V, Guignandon A, Vico L, Mauclair C, Zapata X, Linossier MT, et al. Femtosecond laser nano/micro patterning of titanium influences mesenchymal stem cell adhesion and commitment. Biomed Mater 2015;10(5):055002. link1

[16] Manakari V, Parande G, Gupta M. Selective laser melting of magnesium and magnesium alloy powders: a review. Metals (Basel) 2017;7(1):2. link1

[17] Willbold E, Weizbauer A, Loos A, Seitz JM, Angrisani N, Windhagen H, et al. Magnesium alloys: a stony pathway from intensive research to clinical reality. Different test methods and approval-related considerations. J Biomed Mater Res A 2017;105(1):329–47. link1

[18] Guan YC, Zhou W, Li ZL, Zheng HY. Laser-induced microstructural development and phase evolution in magnesium alloy. J Alloys Compd 2014;582:491–5. link1

[19] Guan YC, Zhou W, Li ZL, Zheng HY. Influence of overlapping tracks on microstructure evolution and corrosion behavior in laser-melt magnesium alloy. Mater Design 2013;52:452–8. link1

[20] Coy AE, Viejo F, Garcia-Garcia FJ, Liu Z, Skeldon P, Thompson GE. Effect of excimer laser surface melting on the microstructure and corrosion performance of the die cast AZ91D magnesium alloy. Corros Sci 2010;52 (2):387–97. link1

[21] Voelker R. Liquid biopsy receives approval. JAMA 2016;316(3):260. link1

[22] De Lázaro I, Kostarelos K. Optical diagnostics: nanosensors for liquid biopsies. Nat Biomed Eng 2017;1:0063. link1

[23] Diaz Jr LA, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 2014;32(6):579–86. link1

[24] Schrump DS. Circulating tumor DNA: solid data from liquid biopsies. J Thorac Cardiovasc Surg 2017;154(3):1132–3. link1

[25] Xu K, Zhang C, Zhou R, Ji R, Hong M. Hybrid micro/nano-structure formation by angular laser texturing of Si surface for surface enhanced Raman scattering.Opt Express 2016;24(10):10352–8. link1

[26] Zhu Z, Yan Z, Zhan P, Wang Z. Large-area surface-enhanced Raman scatteringactive substrates fabricated by femtosecond laser ablation. Sci China Phys Mech Astron 2013;56(9):1806–9. link1

[27] Parmar V, Kanaujia PK, Bommali RK, Vijaya Prakash G. Efficient surface enhanced Raman scattering substrates from femtosecond laser based fabrication. Opt Mater 2017;72:86–90. link1

[28] Buividas R, Stoddart PR, Juodkazis S. Laser fabricated ripple substrates for surface-enhanced Raman scattering. Ann Phys 2012;524(11):L5–L10. link1

[29] Rebollar E, Sanz M, Pérez S, Hernández M, Martín-Fabiani I, Rueda DR, et al. Gold coatings on polymer laser induced periodic surface structures: assessment as substrates for surface-enhanced Raman scattering. Phys Chem Chem Phys 2012;14(45):15699–705. link1

[30] Jang Y, Tan Z, Jurey C, Collins B, Badve A, Dong Z, et al. Systematic understanding of corrosion behavior of plasma electrolytic oxidation treated AZ31 magnesium alloy using a mouse model of subcutaneous implant. Mater Sci Eng C 2014;45:45–55. link1

[31] Ma C, Peng G, Nie L, Liu H, Guan Y. Laser surface modification of Mg–Gd–Ca alloy for corrosion resistance and biocompatibility enhancement. Appl Surf Sci 2018;445:211–6. link1

[32] Xiao B, Yang Q, Yang J, Wang W, Xie G, Ma Z. Enhanced mechanical properties of Mg–Gd–Y–Zr casting via friction stir processing. J Alloys Compd 2011;509 (6):2879–84. link1

[33] Zhang X, Dai J, Yang H, Liu S, He X, Wang Z. Influence of Gd and Ca on microstructure, mechanical and corrosion properties of Mg–Gd–Zn(–Ca) alloys. Mater Technol 2017;32(7):399–408. link1

[34] Liu Y, Kang Z, Zhou L, Zhang J, Li Y. Mechanical properties and biocorrosion behaviour of deformed Mg–Gd–Nd–Zn–Zr alloy by equal channel angular pressing. Corros Eng Sci Technol 2016;51(4):256–62. link1

[35] Xin Y, Huo K, Tao H, Tang G, Chu P. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Acta Biomater 2008;4(6):2008–15. link1

[36] Taltavull C, Shi Z, Torres B, Rams J, Atrens A. Influence of the chloride ion concentration on the corrosion of high-purity Mg, ZE41 and AZ91 in buffered Hank’s solution. J Mater Sci Mater Med 2014;25(2):329–45. link1

[37] Aghion EE, Arnon A, Atar D, Segal G, inventors; Biomagnesium Systems Ltd., assignee. Biodegradable magnesium alloys and uses thereof. WIPO Patent patent WO/2007/125532. 2007 Nov 8. link1

[38] Zheng Y, Gu X, Xi Y, Chai D. In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy. Acta Biomater 2010;6(5):1783–91. link1

[39] Mannion PT, Magee J, Coyne E, O’Connor GM, Glynn TJ. The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air. Appl Surf Sci 2004;233(1–4):275–87. link1

[40] Villa JEL, Santos DP, Poppi RJ. Fabrication of gold nanoparticle-coated paper and its use as a sensitive substrate for quantitative SERS analysis. Mikrochim Acta 2016;183(10):2745–52. link1

[41] Harraz FA, Ismail AA, Bouzid H, Al-Sayari SA, Al-Hajry A, Al-Assiri MS. Surfaceenhanced Raman scattering (SERS)-active substrates from silver plated-porous silicon for detection of crystal violet. Appl Surf Sci 2015;331:241–7. link1

[42] Domingo C, Resta V, Sanchez-Cortes S, García-Ramos JV, Gonzalo J. Pulsed laser deposited Au nanoparticles as substrates for surface-enhanced vibrational spectroscopy. J Phys Chem C 2007;111(23):8149–52. link1

[43] Stiles PL, Dieringer JA, Shah NC, Van Duyne RP. Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem 2008;1(1):601–26. link1

[44] Bauch M, Toma K, Toma M, Zhang Q, Dostalek J. Plasmon-enhanced fluorescence biosensors: a review. Plasmonics 2014;9(4):781–99. link1

[45] Caldarola M, Albella P, Cortés E, Rahmani M, Roschuk T, Grinblat G, et al. Nonplasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nat Commun 2015;6(1):7915. link1

[46] Kelly KL, Coronado E, Zhao L, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 2003;107(3):668–77. link1

[47] Li M, Cushing SK, Wu N. Plasmon-enhanced optical sensors: a review. Analyst 2015;140(2):386–406. link1

[48] Dong J, Zhang Z, Zheng H, Sun M. Recent progress on plasmon-enhanced fluorescence. Nanophotonics 2015;4(1):472–90. link1

[49] Homola J, Piliarik M. Surface plasmon resonance (SPR) sensors. Surface plasmon resonance based sensors. Springer, Berlin Heidelberg 2006;4:45–67. link1

Related Research