Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2018, Volume 4, Issue 6 doi: 10.1016/j.eng.2018.10.008

Recent Advances in Energy Chemical Engineering of Next-Generation Lithium Batteries

a Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

b Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China

Received: 2018-10-24 Revised: 2018-10-29 Accepted: 2018-10-30 Available online: 2018-11-16

Next Previous

Abstract

Rechargeable lithium-ion batteries (LIBs) afford a profound impact on our modern daily life. However, LIBs are approaching the theoretical energy density, due to the inherent limitations of intercalation chemistry; thus, they cannot further satisfy the increasing demands of portable electronics, electric vehicles, and grids. Therefore, battery chemistries beyond LIBs are being widely investigated. Next-generation lithium (Li) batteries, which employ Li metal as the anode and intercalation or conversion materials as the cathode, receive the most intensive interest due to their high energy density and excellent potential for commercialization. Moreover, significant progress has been achieved in Li batteries attributed to the increasing fundamental understanding of the materials and reactions, as well as to technological improvement. This review starts by summarizing the electrolytes for next-generation Li batteries. Key challenges and recent progress in lithium-ion, lithium–sulfur, and lithium–oxygen batteries are then reviewed from the perspective of energy and chemical engineering science. Finally, possible directions for further development in Li batteries are presented. Next-generation Li batteries are expected to promote the sustainable development of human civilization.

Figures

Fig.1

Fig.2

Fig.3

Fig.4

Fig.5

Fig.6

Fig.7

Fig.8

Fig.9

Fig.10

Fig.11

References

[ 1 ] Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature 2001;414(6861):359–67.

[ 2 ] Schmuch R, Wagner R, Hörpel G, Placke T, Winter M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat Energy 2018;3(4):267–78. link1

[ 3 ] Marom R, Amalraj SF, Leifer N, Jacob D, Aurbach D. A review of advanced and practical lithium battery materials. J Mater Chem 2011;21(27):9938–54. link1

[ 4 ] Zu CX, Li H. Thermodynamic analysis on energy densities of batteries. Energy Environ Sci 2011;4(8):2614–24. link1

[ 5 ] Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 2011;4(9):3243–62. link1

[ 6 ] Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 2017;117(15):10403–73. link1

[ 7 ] Zhang XQ, Cheng XB, Zhang Q. Advances in interfaces between Li metal anode and electrolyte. Adv Mater Interfaces 2018;5(2):1701097. link1

[ 8 ] Yoo HD, Markevich E, Salitra G, Sharon D, Aurbach D. On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater Today 2014;17(3):110–21. link1

[ 9 ] Zhao Y, Ding Y, Li Y, Peng L, Byon HR, Goodenough JB, et al. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. Chem Soc Rev 2015;44(22):7968–96. link1

[10] Manthiram A, Yu X, Wang S. Lithium battery chemistries enabled by solidstate electrolytes. Nat Rev Mater 2017;2(4):16103. link1

[11] Whittingham MS. Lithium batteries and cathode materials. Chem Rev 2004;104(10):4271–301 link1

[12] Nitta N, Wu F, Lee JT, Yushin G. Li-ion battery materials: present and future. Mater Today 2015;18(5):252–64. link1

[13] Huang H, Yin SC, Nazar LF. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem Solid-State Lett 2001;4(10): A170–2. link1

[14] Wu F, Yushin G. Conversion cathodes for rechargeable lithium and lithiumion batteries. Energy Environ Sci 2017;10(2):435–59. link1

[15] Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li–O2 and Li–S batteries with high energy storage. Nat Mater 2011;11(1):19–29. link1

[16] Obrovac MN, Chevrier VL. Alloy negative electrodes for Li-ion batteries. Chem Rev 2014;114(23):11444–502. link1

[17] Kim H, Jeong G, Kim YU, Kim JH, Park CM, Sohn HJ. Metallic anodes for next generation secondary batteries. Chem Soc Rev 2013;42(23):9011–34. link1

[18] Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 2014;114(23):11503–618. link1

[19] Eftekhari A. High-energy aqueous lithium batteries. Adv Energy Mater 2018;8 (24):1801156. link1

[20] Yang C, Chen J, Qing T, Fan X, Sun W, von Cresce A, et al. 4.0 V aqueous Li-ion batteries. Joule 2017;1(1):122–32. link1

[21] Bin D, Wen Y, Wang Y, Xia Y. The development in aqueous lithium-ion batteries. J Energy Chem 2018;27(6):1521–35. link1

[22] Jin Y, Zhu B, Lu Z, Liu N, Zhu J. Challenges and recent progress in the development of Si anodes for lithium-ion battery. Adv Energy Mater 2017;7 (23):1700715. link1

[23] Li P, Zhao G, Zheng X, Xu X, Yao C, Sun W, et al. Recent progress on siliconbased anode materials for practical lithium-ion battery applications. Energy Storage Mater 2018;15:422–46. link1

[24] Hwang JY, Myung ST, Sun YK. Sodium-ion batteries: present and future. Chem Soc Rev 2017;46(12):3529–614. link1

[25] Lu Y, Li L, Zhang Q, Niu Z, Chen J. Electrolyte and interface engineering for solid-state sodium batteries. Joule 2018;2(9):1747–70. link1

[26] Zhao C, Lu Y, Yue J, Pan D, Qi Y, Hu YS, et al. Advanced Na metal anodes. J Energy Chem 2018;27(6):1584–96. link1

[27] Zhang C, Zhang L, Ding Y, Peng S, Guo X, Zhao Y, et al. Progress and prospects of next-generation redox flow batteries. Energy Storage Mater 2018;15:324–50. link1

[28] Cheng XB, Yan C, Zhang XQ, Liu H, Zhang Q. Electronic and ionic channels in working interfaces of lithium metal anodes. ACS Energy Lett 2018;3 (7):1564–70. link1

[29] Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater 2010;22(3):587–603. link1

[30] Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 2004;104(10):4303–418. link1

[31] Wang L, Ye Y, Chen N, Huang Y, Li L, Wu F, et al. Development and challenges of functional electrolytes for high-performance lithium–sulfur batteries. Adv Funct Mater 2018;28(38):1800919. link1

[32] Tikekar MD, Choudhury S, Tu Z, Archer LA. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat Energy 2016;1 (9):16114. link1

[33] Younesi R, Veith GM, Johansson P, Edström K, Vegge T. Lithium salts for advanced lithium batteries: Li-metal, Li–O2, and Li–S. Energy Environ Sci 2015;8(7):1905–22. link1

[34] Yamada Y, Yamada A. Review—superconcentrated electrolytes for lithium batteries. J Electrochem Soc 2015;162(14):A2406–23. link1

[35] Zhang X, Cheng X, Zhang Q. Nanostructured energy materials for electrochemical energy conversion and storage: a review. J Energy Chem 2016;25(6):967–84. link1

[36] Aurbach D, Talyosef Y, Markovsky B, Markevich E, Zinigrad E, Asraf L, et al. Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochim Acta 2004;50(2–3):247–54. link1

[37] Zhang S. A review on electrolyte additives for lithium-ion batteries. J Power Sources 2006;162(2):1379–94. link1

[38] Verma P, Maire P, Novák P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta 2010;55 (22):6332–41. link1

[39] Xu W, Wang J, Ding F, Chen X, Nasybutin E, Zhang Y, et al. Lithium metal anodes for rechargeable batteries. Energy Environ Sci 2014;7(2):513–37. link1

[40] Manthiram A, Fu Y, Chung SH, Zu C, Su YS. Rechargeable lithium–sulfur batteries. Chem Rev 2014;114(23):11751–87. link1

[41] Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B, Liedtke R, et al. A critical review of Li/air batteries. J Electrochem Soc 2012;159(2): R1–30. link1

[42] Suo L, Hu YS, Li H, Armand M, Chen L. A new class of Solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 2013;4(1):1481. link1

[43] Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, et al. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J Am Chem Soc 2014;136 (13):5039–46. link1

[44] Chen S, Zheng J, Mei D, Han KS, Engelhard MH, Zhao W, et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv Mater 2018;30(21):1706102. link1

[45] Fan X, Chen L, Borodin O, Ji X, Chen J, Hou S, et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat Nanotechnol 2018;13(8):715–22. link1

[46] Suo L, Xue W, Gobet M, Greenbaum SG, Wang C, Chen Y, et al. Fluorinedonating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc Natl Acad Sci USA 2018;115(6):1156–61. link1

[47] Zhang ZZ, Shao YJ, Lotsch B, Hu YS, Li H, Janek J, et al. New horizons for inorganic solid state ion conductors. Energy Environ Sci 2018;11(8):1945–76. link1

[48] Takada K. Progress in solid electrolytes toward realizing solid-state lithium batteries. J Power Sources 2018;394:74–85. link1

[49] Yue L, Ma J, Zhang J, Zhao J, Dong S, Liu Z, et al. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater 2016;5:139–64.

[50] Zhu Y, He X, Mo Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on firstprinciples calculations. ACS Appl Mater Interfaces 2015;7(42):23685–93. link1

[51] Han F, Zhu Y, He X, Mo Y, Wang C. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv Energy Mater 2016;6(8):1501590. link1

[52] Zhang W, Leichtweiß T, Culver SP, Koerver R, Das D, Weber DA, et al. The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries. ACS Appl Mater Interfaces 2017;9(41):35888–96. link1

[53] Goodenough JB, Singh P. Review—solid electrolytes in rechargeable electrochemical cells. J Electrochem Soc 2015;162(14):A2387–92. link1

[54] Luntz AC, Voss J, Reuter K. Interfacial challenges in solid-state Li ion batteries. J Phys Chem Lett 2015;6(22):4599–604. link1

[55] Kerman K, Luntz A, Viswanathan V, Chiang YM, Chen Z. Review—practical challenges hindering the development of solid state Li ion batteries. J Electrochem Soc 2017;164(7):A1731–44. link1

[56] Han X, Gong Y, Fu KK, He X, Hitz GT, Dai J, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater 2017;16 (5):572–9. link1

[57] Wu J, Ling S, Yang Q, Li H, Xu X, Chen L. Forming solid electrolyte interphase in situ in an ionic conducting Li1.5Al0.5Ge1.5(PO4)3–polypropylene (PP) based separator for Li-ion batteries. Chin Phys B 2016;25(7):078204. link1

[58] Li Y, Zhou W, Chen X, Lü X, Cui Z, Xin S, et al. Mastering the interface for advanced all-solid-state lithium rechargeable batteries. Proc Natl Acad Sci USA 2016;113(47):13313–7. link1

[59] Luo W, Gong Y, Zhu Y, Fu KK, Dai J, Lacey SD, et al. Transition from superlithiophobicity to superlithiophilicity of Garnet solid-state electrolyte. J Am Chem Soc 2016;138(37):12258–62. link1

[60] Zhang W, Richter FH, Culver SP, Leichtweiss T, Lozano JG, Dietrich C, et al. Degradation mechanisms at the Li10GeP2S12/LiCoO2 cathode interface in an all-solid-state lithium-ion battery. ACS Appl Mater Interfaces 2018;10 (26):22226–36. link1

[61] Wu B, Wang S, Lochala J, Desrochers D, Liu B, Zhang W, et al. The role of solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries. Energy Environ Sci 2018;11(7):1803–10. link1

[62] Li Y, Chen X, Dolocan A, Cui Z, Xin S, Xue L, et al. Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries. J Am Chem Soc 2018;140 (20):6448–55. link1

[63] Dai J, Yang C, Wang C, Pastel G, Hu L. Interface engineering for Garnet-based solid-state lithium-metal batteries: materials, structures, and characterization. Adv Mater 2018;30:1802068. link1

[64] Li Y, Han JT, Vogel SC, Wang CA. The reaction of Li6.5La3Zr1.5Ta0.5O12 with water. Solid State Ion 2015;269:57–61. link1

[65] Li Y, Xu B, Xu H, Duan H, Lü X, Xin S, et al. Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew Chem Int Ed 2017;56(3):753–6. link1

[66] Camacho-Forero LE, Balbuena PB. Exploring interfacial stability of solid-state electrolytes at the lithium-metal anode surface. J Power Sources 2018;396:782–90.

[67] Hofstetter K, Samson AJ, Narayanan S, Thangadurai V. Present understanding of the stability of Li-stuffed garnets with moisture, carbon dioxide, and metallic lithium. J Power Sources 2018;390:297–312. link1

[68] Lang J, Qi L, Luo Y, Wu H. High performance lithium metal anode: progress and prospects. Energy Storage Mater 2017;7:115–29. link1

[69] Peng HJ, Huang JQ, Cheng XB, Zhang Q. Review on high-loading and highenergy lithium–sulfur batteries. Adv Energy Mater 2017;7(24):1700260.

[70] Chung SH, Chang CH, Manthiram A. Progress on the critical parameters for lithium–sulfur batteries to be practically viable. Adv Funct Mater 2018;28 (28):1801188. link1

[71] Grande L, Paillard E, Hassoun J, Park JB, Lee YJ, Sun YK, et al. The lithium/air battery: still an emerging system or a practical reality? Adv Mater 2015;27 (5):784–800. link1

[72] Ma L, Yu T, Tzoganakis E, Amine K, Wu T, Chen Z, et al. Fundamental understanding and material challenges in rechargeable nonaqueous Li–O2 batteries: recent progress and perspective. Adv Energy Mater 2018;8 (22):1800348. link1

[73] Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J Electrochem Soc 1979;126(12):2047–51. link1

[74] Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 2017;12(3):194–206. link1

[75] Wood KN, Kazyak E, Chadwick AF, Chen KH, Zhang JG, Thornton K, et al. Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent Sci 2016;2(11):790–801. link1

[76] Li Y, Li Y, Pei A, Yan K, Sun Y, Wu CL, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 2017;358(6362):506–10. link1

[77] Goren E, Chusid O, Aurbach D. The application of in situ FTIR spectroscopy to the study of surface films formed on lithium and noble metals at low potentials in Li battery electrolytes. J Electrochem Soc 1991;138(5):L6–9. link1

[78] Odziemkowski M, Krell M, Irish DE. A Raman microprobe in situ and ex situ study of film formation at lithium/organic electrolyte interfaces. J Electrochem Soc 1992;139(11):3052–63. link1

[79] Aurbach D, Moshkovich M. A study of lithium deposition-dissolution processes in a few selected electrolyte solutions by electrochemical quartz crystal microbalance. J Electrochem Soc 1998;145(8):2629–39. link1

[80] Smaran KS, Shibata S, Omachi A, Ohama A, Tomizawa E, Kondo T. Aniondependent potential precycling effects on lithium deposition/dissolution reaction studied by an electrochemical quartz crystal microbalance. J Phys Chem Lett 2017;8(20):5203–8. link1

[81] Shpigel N, Levi MD, Sigalov S, Daikhin L, Aurbach D. In situ real-time mechanical and morphological characterization of electrodes for electrochemical energy storage and conversion by electrochemical quartz crystal microbalance with dissipation monitoring. Acc Chem Res 2018;51 (1):69–79. link1

[82] Wood KN, Noked M, Dasgupta NP. Lithium metal anodes: toward an improved understanding of coupled morphological, electrochemical, and mechanical behavior. ACS Energy Lett 2017;2(3):664–72. link1

[83] Chandrashekar S, Trease NM, Chang HJ, Du LS, Grey CP, Jerschow A. 7Li MRI of Li batteries reveals location of microstructural lithium. Nat Mater 2012;11 (4):311–5. link1

[84] Liu Z, Lu P, Zhang Q, Xiao X, Qi Y, Chen LQ. A bottom-up formation mechanism of solid electrolyte interphase revealed by isotope-assisted time-of-flight secondary ion mass spectrometry. J Phys Chem Lett 2018;9(18):5508–14. link1

[85] Cheng X, Zhang R, Zhao C, Wei F, Zhang J, Zhang Q. A review of solid electrolyte interphases on lithium metal anode. Adv Sci 2016;3(3):1500213. link1

[86] Li Y, Huang W, Li Y, Pei A, Boyle DT, Cui Y. Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy. Joule 2018;2(10):2167–77. link1

[87] Chen X, Shen X, Li B, Peng H, Cheng X, Li B, et al. Ion-solvent complexes promote gas evolution from electrolytes on a sodium metal anode. Angew Chem Int Ed 2018;57(3):734–7. link1

[88] Chazalviel J. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys Rev A 1990;42(12):7355–67. link1

[89] Brissot C, Rosso M, Chazalviel JN, Baudry P, Lascaud S. In situ study of dendritic growth in lithium/PEO–salt/lithium cells. Electrochim Acta 1998;43 (10–11):1569–74. link1

[90] Zhang R, Li N, Cheng X, Yin Y, Zhang Q, Guo Y. Advanced micro/nanostructures for lithium metal anodes. Adv Sci 2017;4(3):1600445. link1

[91] Markevich E, Salitra G, Chesneau F, Schmidt M, Aurbach D. Very stable lithium metal stripping-plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution. ACS Energy Lett 2017;2(6):1321–6. link1

[92] Shkrob IA, Marin TW, Zhu Y, Abraham DP. Why bis(fluorosulfonyl)imide is a ‘‘magic anion” for electrochemistry. J Phys Chem C 2014;118(34):19661–71. link1

[93] Qian J, Henderson WA, Xu W, Bhattacharya P, Engelhard M, Borodin O, et al.High rate and stable cycling of lithium metal anode. Nat Commun 2015;6 (1):6362. link1

[94] Suo L, Borodin O, Gao T, Olguin M, Ho J, Fan X, et al. ‘‘Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 2015;350(6263):938–43. link1

[95] Zhao C, Cheng X, Zhang R, Peng H, Huang J, Ran R, et al. Li2S5-based ternarysalt electrolyte for robust lithium metal anode. Energy Storage Mater 2016;3:77–84. link1

[96] Ding F, Xu W, Graff GL, Zhang J, Sushko ML, Chen X, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc 2013;135(11):4450–6. link1

[97] Yan C, Cheng X, Yao Y, Shen X, Li B, Li W, et al. An armored mixed conductor interphase on a dendrite-free lithium-metal anode. Adv Mater 2018;30:1804461. link1

[98] Qian J, Xu W, Bhattacharya P, Engelhard M, Henderson WA, Zhang Y, et al. Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive. Nano Energy 2015;15:135–44. link1

[99] Yan C, Cheng X, Zhao C, Huang J, Yang S, Zhang Q. Lithium metal protection through in-situ formed solid electrolyte interphase in lithium–sulfur batteries: the role of polysulfides on lithium anode. J Power Sources 2016;327:212–20. link1

[100] Cheng X, Zhao M, Chen C, Pentecost A, Maleski K, Mathis T, et al. Nanodiamonds suppress the growth of lithium dendrites. Nat Commun 2017;8(1):336. link1

[101] Huang F, Ma G, Wen Z, Jin J, Xu S, Zhang J. Enhancing metallic lithium battery performance by tuning the electrolyte solution structure. J Mater Chem A 2018;6(4):1612–20. link1

[102] Bogle X, Vazquez R, Greenbaum S, Cresce A, Xu K. Understanding Li+–solvent interaction in nonaqueous carbonate electrolytes with 17O NMR. J Phys Chem Lett 2013;4(10):1664–8. link1

[103] Zhang X, Cheng X, Chen X, Yan C, Zhang Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv Funct Mater 2017;27(10):1605989. link1

[104] Zhang X, Chen X, Cheng X, Li B, Shen X, Yan C, et al. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angew Chem Int Ed 2018;57(19):5301–5. link1

[105] Yan C, Yao Y, Chen X, Cheng X, Zhang X, Huang J, et al. Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries. Angew Chem Int Ed 2018;57(43):14055–9. link1

[106] Suo L, Oh D, Lin Y, Zhuo Z, Borodin O, Gao T, et al. How solid-electrolyte interphase forms in aqueous electrolytes. J Am Chem Soc 2017;139 (51):18670–80. link1

[107] Liu Y, Liu Q, Xin L, Liu Y, Yang F, Stach EA, et al. Making Li-metal electrodes rechargeable by controlling the dendrite growth direction. Nat Energy 2017;2 (7):17083. link1

[108] Ye H, Xin S, Yin Y, Li J, Guo Y, Wan L. Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons. J Am Chem Soc 2017;139 (16):5916–22. link1

[109] Cheng X, Peng H, Huang J, Zhang R, Zhao C, Zhang Q. Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium–sulfur batteries. ACS Nano 2015;9(6):6373–82. link1

[110] Liu K, Pei A, Lee HR, Kong B, Liu N, Lin D, et al. Lithium metal anodes with an adaptive ‘‘solid–liquid” interfacial protective layer. J Am Chem Soc 2017;139 (13):4815–20. link1

[111] Lu Q, He Y, Yu Q, Li B, Kaneti YV, Yao Y, et al. Dendrite-free, high-rate, longlife lithium-metal batteries with a 3D cross-linked network polymer electrolyte. Adv Mater 2017;29(13):1604460. link1

[112] Zhu B, Jin Y, Hu X, Zheng Q, Zhang S, Wang Q, et al. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Adv Mater 2017;29(2):1603755. link1

[113] Hu Z, Zhang S, Dong S, Li W, Li H, Cui G, et al. Poly(ethyl a-cyanoacrylate)based artificial solid electrolyte interphase layer for enhanced interface stability of Li metal anodes. Chem Mater 2017;29(11):4682–9. link1

[114] Jing H, Kong L, Liu S, Li G, Gao X. Protected lithium anode with porous Al2O3 layer for lithium–sulfur battery. J Mater Chem A 2015;3(23):12213–9. link1

[115] Liang X, Pang Q, Kochetkov IR, Sempere MS, Huang H, Sun X, et al. A facile surface chemistry route to a stabilized lithium metal anode. Nat Energy 2017;2(9):17119. link1

[116] Liu W, Li W, Zhuo D, Zheng G, Lu Z, Liu K, et al. Core-shell nanoparticle coating as an interfacial layer for dendrite-free lithium metal anodes. ACS Cent Sci 2017;3(2):135–40. link1

[117] Tu Z, Zachman MJ, Choudhury S, Khan KA, Zhao Q, Kourkoutis LF, et al. Stabilizing protic and aprotic liquid electrolytes at high-bandgap oxide interphases. Chem Mater 2018;30(16):5655–62. link1

[118] Zhang X, Chen X, Xu R, Cheng X, Peng H, Zhang R, et al. Columnar lithium metal anodes. Angew Chem Int Ed 2017;56(45):14207–11. link1

[119] Zheng G, Lee SW, Liang Z, Lee HW, Yan K, Yao H, et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol 2014;9(8):618–23. link1

[120] Li NW, Shi Y, Yin Y, Zeng X, Li J, Li C, et al. A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew Chem Int Ed 2018;57(6):1505–9. link1

[121] Zhao Q, Tu Z, Wei S, Zhang K, Choudhury S, Liu X, et al. Building organic/ inorganic hybrid interphases for fast interfacial transport in rechargeable metal batteries. Angew Chem Int Ed 2018;57(4):992–6. link1

[122] Xu R, Zhang X, Cheng X, Peng H, Zhao C, Yan C, et al. Artificial soft–rigid protective layer for dendrite-free lithium metal anode. Adv Funct Mater 2018;28(8):1705838. link1

[123] Wang X, Zhang Y, Zhang X, Liu T, Lin Y, Li L, et al. Lithium-salt-rich PEO/ Li0.3La0.557TiO3 interpenetrating composite electrolyte with threedimensional ceramic nano-backbone for all-solid-state lithium-ion batteries. ACS Appl Mater Interfaces 2018;10(29):24791–8. link1

[124] Zhao C, Zhang X, Cheng X, Zhang R, Xu R, Chen P, et al. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc Natl Acad Sci USA 2017;114(42):11069–74. link1

[125] Zhang R, Cheng X, Zhao C, Peng H, Shi J, Huang J, et al. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv Mater 2016;28(11):2155–62. link1

[126] Yang C, Yin Y, Zhang S, Li N, Guo Y. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat Commun 2015;6(1):8058. link1

[127] Yun Q, He Y, Lv W, Zhao Y, Li B, Kang F, et al. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv Mater 2016;28(32):6932–9. link1

[128] Fan L, Li S, Liu L, Zhang W, Gao L, Fu Y, et al. Enabling stable lithium metal anode via 3D inorganic skeleton with superlithiophilic interphase. Adv Energy Mater 2018;8:1802350. link1

[129] Cui J, Zhan T, Zhang K, Chen D. The recent advances in constructing designed electrode in lithium metal batteries. Chin Chem Lett 2017;28(12):2171–9. link1

[130] Lu L, Zhang Y, Pan Z, Yao H, Zhou F, Yu S. Lithiophilic Cu–Ni core-shell nanowire network as a stable host for improving lithium anode performance. Energy Storage Mater 2017;9:31–8. link1

[131] Liu Y, Lin D, Liang Z, Zhao J, Yan K, Cui Y. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat Commun 2016;7:10992. link1

[132] Jin C, Sheng O, Luo J, Yuan H, Fang C, Zhang W, et al. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy 2017;37:177–86. link1

[133] Liang Z, Lin D, Zhao J, Lu Z, Liu Y, Liu C, et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc Natl Acad Sci USA 2016;113(11):2862–7. link1

[134] Zhang R, Chen X, Chen X, Cheng X, Zhang X, Yan C, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew Chem Int Ed 2017;56(27):7764–8. link1

[135] Jin C, Sheng O, Lu Y, Luo J, Yuan H, Zhang W, et al. Metal oxide nanoparticles induced step-edge nucleation of stable Li metal anode working under an ultrahigh current density of 15 mAcm2. Nano Energy 2018;45:203–9. link1

[136] Schipper F, Erickson EM, Erk C, Shin JY, Chesneau FF, Aurbach D. Review— recent advances and remaining challenges for lithium ion battery cathodes: I.nickel-rich, LiNixCoyMnzO2. J Electrochem Soc 2017;164(1):A6220–8. link1

[137] Nayak PK, Erickson EM, Schipper F, Penki TR, Munichandraiah N, Adelhelm P, et al. Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries. Adv Energy Mater 2018;8(8):1702397. link1

[138] Huang Q, Ma L, Liu A, Ma X, Li J, Wang J, et al. The reactivity of charged positive Li1–n[NixMnyCoz]O2 electrodes with electrolyte at elevated temperatures using accelerating rate calorimetry. J Power Sources 2018;390:78–86. link1

[139] Yan C, Xu Y, Xia J, Gong C, Chen K. Tris(trimethylsilyl) borate as an electrolyte additive for high-voltage lithium-ion batteries using LiNi1/3Mn1/3Co1/3O2 cathode. J Energy Chem 2016;25(4):659–66. link1

[140] Zheng J, Engelhard MH, Mei D, Jiao S, Polzin BJ, Zhang JG, et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat Energy 2017;2(3):17012. link1

[141] Liu L, Yin Y, Li J, Wang S, Guo Y, Wan L. Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for highperformance lithium metal anodes. Adv Mater 2018;30(10):1706216. link1

[142] Liu Y, Lin D, Yuen P, Liu K, Xie J, Dauskardt RH, et al. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv Mater 2017;29 (10):1605531. link1

[143] Cheng XB, Hou TZ, Zhang R, Peng HJ, Zhao CZ, Huang JQ, et al. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv Mater 2016;28(15):2888–95. link1

[144] Davis LA. Clean energy perspective. Engineering 2017;3(6):782. link1

[145] Zhang Y. Clean energy: opportunities and challenges. Engineering 2017;3 (4):431. link1

[146] Ji X, Lee KT, Nazar LF. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater 2009;8(6):500–6. link1

[147] Zhao M, Zhang Q, Huang J, Tian G, Nie J, Peng H, et al. Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries. Nat Commun 2014;5(1):3410. link1

[148] Li H, Sun L, Zhang Y, Tan T, Wang G, Bakenov Z. Enhanced cycle performance of Li/S battery with the reduced graphene oxide/activated carbon functional interlayer. J Energy Chem 2017;26(6):1276–81. link1

[149] Cheng X, Huang J, Zhang Q, Peng H, Zhao M, Wei F. Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium– sulfur batteries. Nano Energy 2014;4:65–72. link1

[150] Hu G, Sun Z, Shi C, Fang R, Chen J, Hou P, et al. A sulfur-rich copolymer@CNT hybrid cathode with dual-confinement of polysulfides for high-performance lithium–sulfur batteries. Adv Mater 2017;29(11):29. link1

[151] Li Z, Wu H, Lou X. Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium–sulfur batteries. Energy Environ Sci 2016;9:3061. link1

[152] Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA. Porous hollow carbon@sulfur composites for high-power lithium–sulfur batteries. Angew Chem Int Ed 2011;50(26):5904–8. link1

[153] Peng H, Huang J, Zhao M, Zhang Q, Cheng X, Liu X, et al. Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium–sulfur batteries. Adv Funct Mater 2014;24(19):2772–81. link1

[154] Huang J, Zhuang T, Zhang Q, Peng H, Chen C, Wei F. Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium–sulfur batteries. ACS Nano 2015;9(3):3002–11. link1

[155] Peng H, Wang D, Huang J, Cheng X, Yuan Z, Wei F, et al. Janus separator of polypropylene-supported cellular graphene framework for sulfur cathodes with high utilization in lithium–sulfur batteries. Adv Sci 2015;3(1):1500268. link1

[156] Fang R, Chen K, Yin L, Sun Z, Li F, Cheng H. The regulating role of carbon nanotubes and graphene in lithium-ion and lithium–sulfur batteries. Adv Mater 2018;30:1800863. link1

[157] Xiao L, Cao Y, Xiao J, Schwenzer B, Engelhard MH, Saraf LV, et al. A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium–sulfur batteries with long cycle life. Adv Mater 2012;24(9):1176–81. link1

[158] Ma G, Wen Z, Jin J, Lu Y, Rui K, Wu X, et al. Enhanced performance of lithium sulfur battery with polypyrrole warped mesoporous carbon/sulfur composite. J Power Sources 2014;254:353–9. link1

[159] Chung SH, Manthiram A. A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium–sulfur batteries. Adv Mater 2014;26(43):7352–7. link1

[160] Liu S, Hong X, Li Y, Xu J, Zheng C, Xie K. A nanoporous nitrogen-doped graphene for high performance lithium sulfur batteries. Chin Chem Lett 2017;28(2):412–6. link1

[161] Zhou G, Paek E, Hwang GS, Manthiram A. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat Commun 2015;6:7760. link1

[162] Zhang H, Zhao Z, Liu Y, Liang J, Hou Y, Zhang Z, et al. Nitrogen-doped hierarchical porous carbon derived from metal–organic aerogel for high performance lithium–sulfur batteries. J Energy Chem 2017;26(6):1282–90. link1

[163] Ai W, Zhou W, Du Z, Chen Y, Sun Z, Wu C, et al. Nitrogen and phosphorus codoped hierarchically porous carbon as an efficient sulfur host for Li–S batteries. Energy Storage Mater 2017;6:112–8. link1

[164] Li BQ, Zhang SY, Kong L, Peng HJ, Zhang Q. Porphyrin organic framework hollow spheres and their applications in lithium–sulfur batteries. Adv Mater 2018;30(23):1707483. link1

[165] Seh ZW, Yu JH, Li W, Hsu PC, Wang H, Sun Y, et al. Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nat Commun 2014;5:5017. link1

[166] Wei Seh Z, Li W, Cha JJ, Zheng G, Yang Y, McDowell MT, et al. Sulphur–TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium– sulphur batteries. Nat Commun 2013;4:1331. link1

[167] Li Z, Zhang N, Sun Y, Ke H, Cheng H. Application of diatomite as an effective polysulfides adsorbent for lithium–sulfur batteries. J Energy Chem 2017;26 (6):1267–75. link1

[168] Li L, Chen L, Mukherjee S, Gao J, Sun H, Liu Z, et al. Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium–sulfur batteries. Adv Mater 2017;29(2):1602734. link1

[169] Fang R, Zhao S, Sun Z, Wang DW, Amal R, Wang S, et al. Polysulfide immobilization and conversion on a conductive polar MoC@MoOx material for lithium–sulfur batteries. Energy Storage Mater 2018;10:56–61. link1

[170] Chen K, Sun Z, Fang R, Shi Y, Cheng HM, Li F. Metal–organic frameworks (MOFs)-derived nitrogen-doped porous carbon anchored on graphene with multifunctional effects for lithium–sulfur batteries. Adv Funct Mater 2018;28 (38):1707592. link1

[171] Peng HJ, Zhang G, Chen X, Zhang ZW, Xu WT, Huang JQ, et al. Enhanced electrochemical kinetics on conductive polar mediators for lithium–sulfur batteries. Angew Chem Int Ed 2016;55(42):12990–5. link1

[172] Hou TZ, Xu WT, Chen X, Peng HJ, Huang JQ, Zhang Q. Lithium bond chemistry in lithium–sulfur batteries. Angew Chem Int Ed 2017;56(28):8178–82. link1

[173] Chen X, Hou T, Persson KA, Zhang Q. Combining theory and experiment in lithium–sulfur batteries: current progress and future perspectives. Mater Today 2018. doi:10.1016/j.mattod.2018.04.007. link1

[174] Chen X, Peng HJ, Zhang R, Hou TZ, Huang JQ, Li B, et al. An analogous periodic law for strong anchoring of polysulfides on polar hosts in lithium sulfur batteries: S- or Li-binding on first-row transition-metal sulfides? ACS Energy Lett 2017;2(4):795–801. link1

[175] Jin Z, Xie K, Hong X, Hu Z, Liu X. Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells. J Power Sources 2012;218:163–7. link1

[176] Freitag A, Langklotz U, Rost A, Stamm M, Ionov L. Ionically conductive polymer/ceramic separator for lithium–sulfur batteries. Energy Storage Mater 2017;9:105–11. link1

[177] Chung SH, Manthiram A. Bifunctional separator with a light-weight carboncoating for dynamically and statically stable lithium–sulfur batteries. Adv Funct Mater 2014;24(33):5299–306. link1

[178] Tang X, Sun Z, Yang H, Fang H, Wei F, Cheng HM, et al. Electrochemical process of sulfur in carbon materials from electrode thickness to interlayer. J Energy Chem 2018. doi:10.1016/j.jechem.2018.06.001. link1

[179] Qin JL, Peng HJ, Huang JQ, Zhang XQ, Kong L, Xie J, et al. Solvent-engineered scalable production of polysulfide-blocking shields to enhance practical lithium–sulfur batteries. Small Methods 2018;2(8):1800100. link1

[180] Zhang ZY, Lai YQ, Zhang ZA, Zhang K, Li J. Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries. Electrochim Acta 2014;129:55–61. link1

[181] Xu R, Sun Y, Wang Y, Huang J, Zhang Q. Two-dimensional vermiculite separator for lithium sulfur batteries. Chin Chem Lett 2017;28(12):2235–8. link1

[182] Cheng XB, Yan C, Huang JQ, Li P, Zhu L, Zhao L, et al. The gap between long lifespan Li–S coin and pouch cells: the importance of lithium metal anode protection. Energy Storage Mater 2017;6:18–25. link1

[183] Aurbach D, Pollak E, Elazari R, Salitra G, Kelley CS, Affinito J. On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J Electrochem Soc 2009;156(8):A694–702. link1

[184] Yuan Z, Peng HJ, Hou TZ, Huang JQ, Chen CM, Wang DW, et al. Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett 2016;16(1):519–27. link1

[185] Kong L, Chen X, Li BQ, Peng HJ, Huang JQ, Xie J, et al. A bifunctional perovskite promoter for polysulfide regulation toward stable lithium–sulfur batteries. Adv Mater 2018;30(2):1705219. link1

[186] Zhang ZW, Peng HJ, Zhao M, Huang JQ. Heterogeneous/homogeneous mediators for high-energy-density lithium–sulfur batteries: progress and prospects. Adv Funct Mater 2018;28(38):1707536. link1

[187] Fang R, Zhao S, Sun Z, Wang DW, Cheng HM, Li F. More reliable lithium–sulfur batteries: status, solutions and prospects. Adv Mater 2017;29(48):1606823. link1

[188] Blurton KF, Sammells AF. Metal/air batteries: their status and potential—a review. J Power Sources 1979;4(4):263–79. link1

[189] Abraham KM, Jiang Z. A polymer electrolyte-based rechargeable lithium/ oxygen battery. J Electrochem Soc 1996;143(1):1–5. link1

[190] Ogasawara T, Débart A, Holzapfel M, Novák P, Bruce PG. Rechargeable Li2O2 electrode for lithium batteries. J Am Chem Soc 2006;128(4):1390–3. link1

[191] Feng N, He P, Zhou H. Critical challenges in rechargeable aprotic Li–O2 batteries. Adv Energy Mater 2016;6(9):1502303. link1

[192] Tu Y, Deng D, Bao X. Nanocarbons and their hybrids as catalysts for nonaqueous lithium–oxygen batteries. J Energy Chem 2016;25(6):957–66. link1

[193] Yang Y, Sun Q, Li YS, Li H, Fu ZW. Nanostructured diamond like carbon thin film electrodes for lithium air batteries. J Electrochem Soc 2011;158(10): B1211–6. link1

[194] Wang Y, Zhou H. To draw an air electrode of a Li–air battery by pencil. Energy Environ Sci 2011;4(5):1704–7. link1

[195] Li Y, Wang J, Li X, Liu J, Geng D, Yang J, et al. Nitrogen-doped carbon nanotubes as cathode for lithium–air batteries. Electrochem Commun 2011;13(7):668–72. link1

[196] Lu YC, Xu Z, Gasteiger HA, Chen S, Hamad-Schifferli K, Shao-Horn Y. Platinum–gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium–air batteries. J Am Chem Soc 2010;132 (35):12170–1. link1

[197] Lu J, Li L, Park JB, Sun YK, Wu F, Amine K. Aprotic and aqueous Li–O2 batteries. Chem Rev 2014;114(11):5611–40. link1

[198] Walker W, Giordani V, Uddin J, Bryantsev VS, Chase GV, Addison D. A rechargeable Li–O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. J Am Chem Soc 2013;135(6):2076–9. link1

[199] Veith GM, Nanda J, Delmau LH, Dudney NJ. Influence of lithium salts on the discharge chemistry of Li–air cells. J Phys Chem Lett 2012;3(10):1242–7. link1

[200] Nasybulin E, Xu W, Engelhard MH, Nie Z, Burton SD, Cosimbescu L, et al. Effects of electrolyte salts on the performance of Li–O2 batteries. J Phys Chem C 2013;117(6):2635–45. link1

[201] Gunasekara I, Mukerjee S, Plichta EJ, Hendrickson MA, Abraham KM. A study of the influence of lithium salt anions on oxygen reduction reactions in Li–air batteries. J Electrochem Soc 2015;162(6):A1055–66. link1

[202] Xie B, Lee HS, Li H, Yang XQ, McBreen J, Chen LQ. New electrolytes using Li2O or Li2O2 oxides and tris(pentafluorophenyl) borane as boron based anion receptor for lithium batteries. Electrochem Commun 2008;10(8):1195–7. link1

[203] Zhang SS, Read J. Partially fluorinated solvent as a co-solvent for the nonaqueous electrolyte of Li/air battery. J Power Sources 2011;196(5): 2867–70. link1

[204] Gao X, Chen Y, Johnson L, Bruce PG. Promoting solution phase discharge in Li– O2 batteries containing weakly solvating electrolyte solutions. Nat Mater 2016;15(8):882–8. link1

[205] Chen Y, Freunberger SA, Peng Z, Fontaine O, Bruce PG. Charging a Li–O2 battery using a redox mediator. Nat Chem 2013;5(6):489–94. link1

[206] Li Y, Wang X, Dong S, Chen X, Cui G. Recent advances in non-aqueous electrolyte for rechargeable Li–O2 batteries. Adv Energy Mater 2016;6 (18):1600751. link1

[207] Chen W, Gong YF, Liu JH. Recent advances in electrocatalysts for non-aqueous Li–O2 batteries. Chin Chem Lett 2017;28(4):709–18. link1

[208] Tang C, Titirici MM, Zhang Q. A review of nanocarbons in energy electrocatalysis: multifunctional substrates and highly active sites. J Energy Chem 2017;26(6):1077–93. link1

[209] Lu J, Lei Y, Lau KC, Luo X, Du P, Wen J, et al. A nanostructured cathode architecture for low charge overpotential in lithium–oxygen batteries. Nat Commun 2013;4:2383. Corrigendum in: Nat Commun 2014;5:3290. link1

[210] Cheng H, Scott K. Carbon-supported manganese oxide nanocatalysts for rechargeable lithium–air batteries. J Power Sources 2010;195(5):1370–4. link1

[211] Xiao J, Wang D, Xu W, Wang D, Williford RE, Liu J, et al. Optimization of air electrode for Li/air batteries. J Electrochem Soc 2010;157(4):A487–92. link1

[212] Lu YC, Gasteiger HA, Crumlin E, McGuire R, Shao-Horn Y. Electrocatalytic activity studies of select metal surfaces and implications in Li–air batteries. J Electrochem Soc 2010;157(9):A1016–25. link1

[213] Guo Z, Zhou D, Dong X, Qiu Z, Wang Y, Xia Y. Ordered hierarchical mesoporous/macroporous carbon: a high-performance catalyst for rechargeable Li–O2 batteries. Adv Mater 2013;25(39):5668–72. link1

[214] Débart A, Paterson AJ, Bao J, Bruce PG. Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew Chem Int Ed 2008;47(24):4521–4. link1

Related Research