Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2019, Volume 5, Issue 1 doi: 10.1016/j.eng.2019.01.001

FOXP3 and Its Cofactors as Targets of Immunotherapies

Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-4238, USA

Received: 2018-07-31 Revised: 2018-12-11 Accepted: 2019-01-05 Available online: 2019-01-11

Next Previous

Abstract

Forkhead box P3 (FOXP3) is a "master regulator" of regulatory T cells (Tregs), which are a subset of T cells that can suppress the antigen-specific immune reaction and that play important roles in host tolerance and immune homeostasis. It is well known that FOXP3 forms complexes with several proteins and can be regulated by various post-translational modifications (PTMs) such as acetylation, phosphorylation, ubiquitination, and methylation. As a consequence, the PTMs change the stability of FOXP3 and its capability to regulate gene expression, and eventually affect Treg activity. Although FOXP3 per se is not an ideal drug target, deacetylases, acetyltransferases, kinases, and other enzymes that regulate the PTMs of FOXP3 are potential targets to modulate FOXP3 and Treg activity. However, FOXP3 is not the only substrate for most of these enzymes; thus, unwanted "on target/off FOXP3" side effects must be considered when inhibitors to these enzymes are used. In this review, we summarize recent progress in the study of FOXP3 cofactors and PTM proteins, and potential clinical applications in autoimmunity and cancer immunity.  

Figures

Fig. 1

References

[ 1 ] Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic selftolerance maintained by activated T cells expressing IL-2 receptor a-chains (CD25). Breakdown of a single mechanism of selftolerance causes various autoimmune diseases. J Immunol 1995;155(3):1151–64. link1

[ 2 ] Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003;299(5609):1057–61. link1

[ 3 ] Ramsdell F, Ziegler SF. FOXP3 and scurfy: how it all began. Nat Rev Immunol 2014;14(5):343–9. link1

[ 4 ] Deng G, Xiao Y, Zhou Z, Nagai Y, Zhang H, Li B, et al. Molecular and biological role of the FOXP3 N-terminal domain in immune regulation by T regulatory/suppressor cells. Exp Mol Pathol 2012;93(3):334–8. link1

[ 5 ] Song X, Li B, Xiao Y, Chen C, Wang Q, Liu Y, et al. Structural and biological features of FOXP3 dimerization relevant to regulatory T cell function. Cell Rep 2012;1(6):665–75. link1

[ 6 ] Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001;27 (1):68–73. link1

[ 7 ] Chatila TA, Blaeser F, Ho N, Lederman HM, Voulgaropoulos C, Helms C, et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J Clin Invest 2000;106(12): R75–81. link1

[ 8 ] Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001;27(1):20–1. link1

[ 9 ] Barzaghi F, Passerini L, Bacchetta R. Immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome: a paradigm of immunodeficiency with autoimmunity. Front Immunol 2012;3:211. link1

[10] d’Hennezel E, Ben-Shoshan M, Ochs HD, Torgerson TR, Russell LJ, Lejtenyi C, et al. FOXP3 forkhead domain mutation and regulatory T cells in the IPEX syndrome. N Engl J Med 2009;361(17):1710–3. link1

[11] Bacchetta R, Barzaghi F, Roncarolo MG. From IPEX syndrome to FOXP3 mutation: a lesson on immune dysregulation. Ann N Y Acad Sci 2018;1417 (1):5–22. link1

[12] Li B, Greene MI. FOXP3 actively represses transcription by recruiting the HAT/ HDAC complex. Cell Cycle 2007;6(12):1431–5. link1

[13] Rudra D, deRoos P, Chaudhry A, Niec RE, Arvey A, Samstein RM, et al. Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nat Immunol 2012;13(10):1010–9. link1

[14] Kwon HK, Chen HM, Mathis D, Benoist C. Different molecular complexes that mediate transcriptional induction and repression by Foxp3. Nat Immunol 2017;18(11):1238–48. link1

[15] Vaeth M, Schliesser U, Müller G, Reissig S, Satoh K, Tuettenberg A, et al. Dependence on nuclear factor of activated T-cells (NFAT) levels discriminates conventional T cells from Foxp3+ regulatory T cells. Proc Natl Acad Sci USA 2012;109(40):16258–63. link1

[16] Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC, et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 2006;126(2):375–87. link1

[17] Ono M, Yaguchi H, Ohkura N, Kitabayashi I, Nagamura Y, Nomura T, et al. Foxp3 controls regulatory T-cell function by interacting with AML1/RUNX1. Nature 2007;446(7136):685–9. link1

[18] Lu L, Barbi J, Pan F. The regulation of immune tolerance by FOXP3. Nat Rev Immunol 2017;17(11):703–17. link1

[19] Rudra D, Egawa T, Chong MM, Treuting P, Littman DR, Rudensky AY. RUNXCBFb complexes control expression of the transcription factor Foxp3 in regulatory T cells. Nat Immunol 2009;10(11):1170–7. link1

[20] Ruan Q, Kameswaran V, Tone Y, Li L, Liou HC, Greene MI, et al. Development of Foxp3+ regulatory T cells is driven by the c-Rel enhanceosome. Immunity 2009;31(6):932–40. link1

[21] Grinberg-Bleyer Y, Oh H, Desrichard A, Bhatt DM, Caron R, Chan TA, et al. NFjB c-Rel is crucial for the regulatory T cell immune checkpoint in cancer. Cell 2017;170(6). 1096–108.e13. link1

[22] Oh H, Grinberg-Bleyer Y, Liao W, Maloney D, Wang P, Wu Z, et al. An NF-jB transcription-factor-dependent lineage-specific transcriptional program promotes regulatory T cell identity and function. Immunity 2017;47(3):450–65.e5. link1

[23] Zheng Y, Chaudhry A, Kas A, deRoos P, Kim JM, Chu TT, et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses. Nature 2009;458(7236):351–6. link1

[24] Pan F, Yu H, Dang EV, Barbi J, Pan X, Grosso JF, et al. Eos mediates Foxp3- dependent gene silencing in CD4+ regulatory T cells. Science 2009;325 (5944):1142–6. link1

[25] Sebastian M, Lopez-Ocasio M, Metidji A, Rieder SA, Shevach EM, Thornton AM. Helios controls a limited subset of regulatory T cell functions. J Immunol 2016;196(1):144–55. link1

[26] Zhou L, Lopes JE, Chong MM, Ivanov II, Min R, Victora GD, et al. TGF-b-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORct function. Nature 2008;453(7192):236–40. link1

[27] Kluger MA, Meyer MC, Nosko A, Goerke B, Luig M, Wegscheid C, et al. RORct + Foxp3+ cells are an independent bifunctional regulatory T cell lineage and mediate crescentic GN. J Am Soc Nephrol 2016;27(2):454–65. link1

[28] Du J, Huang C, Zhou B, Ziegler SF. Isoform-specific inhibition of RORamediated transcriptional activation by human FOXP3. J Immunol 2008;180 (7):4785–92. link1

[29] Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, et al. Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell 2011;146(5):772–84. link1

[30] Chaudhry A, Rudra D, Treuting P, Samstein RM, Liang Y, Kas A, et al. CD4+ regulatory T cells control TH17 responses in a STAT3-dependent manner. Science 2009;326(5955):986–91. link1

[31] Huang C, Martin S, Pfleger C, Du J, Buckner JH, Bluestone JA, et al. Cutting edge: a novel, human-specific interacting protein couples FOXP3 to a chromatinremodeling complex that contains KAP1/TRIM28. J Immunol 2013;190 (9):4470–3. link1

[32] Tanaka S, Pfleger C, Lai JF, Roan F, Sun SC, Ziegler SF. KAP1 regulates regulatory T cell function and proliferation in both FOXP3-dependent and -independent manners. Cell Rep 2018;23(3):796–807. link1

[33] Hwang SS, Jang SW, Kim MK, Kim LK, Kim BS, Kim HS, et al. YY1 inhibits differentiation and function of regulatory T cells by blocking FOXP3 expression and activity. Nat Commun 2016;7(1):10789. link1

[34] DuPage M, Chopra G, Quiros J, Rosenthal WL, Morar MM, Holohan D, et al. The chromatin-modifying enzyme EZH2 is critical for the maintenance of regulatory T cell identity after activation. Immunity 2015;42(2): 227–38. link1

[35] Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L, Ye X, et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 2008;28(4):546–58. link1

[36] van Loosdregt J, Coffer PJ. Post-translational modification networks regulating FOXP3 function. Trends Immunol 2014;35(8):368–78. link1

[37] Xiao Y, Nagai Y, Deng G, Ohtani T, Zhu Z, Zhou Z, et al. Dynamic interactions between Tip60 and p300 regulate FOXP3 function through a structural switch defined by a single lysine on Tip60. Cell Rep 2014;7(5):1471–80. link1

[38] Liu Y, Wang L, Predina J, Han R, Beier UH, Wang LC, et al. Inhibition of p300 impairs Foxp3+ T regulatory cell function and promotes antitumor immunity. Nat Med 2013;19(9):1173–7. link1

[39] Liu Y, Wang L, Han R, Beier UH, Akimova T, Bhatti T, et al. Two histone/ protein acetyltransferases, CBP and p300, are indispensable for Foxp3+ Tregulatory cell development and function. Mol Cell Biol 2014;34 (21):3993–4007. link1

[40] Wang L, Liu Y, Han R, Beier UH, Bhatti TR, Akimova T, et al. FOXP3+ regulatory T cell development and function require histone/protein deacetylase 3. J Clin Invest 2015;125(8):3304. link1

[41] de Zoeten EF, Wang L, Butler K, Beier UH, Akimova T, Sai H, et al. Histone deacetylase 6 and heat shock protein 90 control the functions of Foxp3+ Tregulatory cells. Mol Cell Biol 2011;31(10):2066–78. link1

[42] de Zoeten EF, Wang L, Sai H, Dillmann WH, Hancock WW. Inhibition of HDAC9 increases T regulatory cell function and prevents colitis in mice. Gastroenterology 2010;138(2):583–94. link1

[43] Huang J, Wang L, Dahiya S, Beier UH, Han R, Samanta A, et al. Histone/protein deacetylase 11 targeting promotes Foxp3+ Treg function. Sci Rep 2017;7 (1):8626. link1

[44] Beier UH, Wang L, Bhatti TR, Liu Y, Han R, Ge G, et al. Sirtuin-1 targeting promotes Foxp3+ T-regulatory cell function and prolongs allograft survival. Mol Cell Biol 2011;31(5):1022–9. link1

[45] Deng G, Nagai Y, Xiao Y, Li Z, Dai S, Ohtani T, et al. Pim-2 kinase influences regulatory T cell function and stability by mediating Foxp3 protein N-terminal phosphorylation. J Biol Chem 2015;290(33):20211–20. link1

[46] Chunder N, Wang L, Chen C, Hancock WW, Wells AD. Cyclin-dependent kinase 2 controls peripheral immune tolerance. J Immunol 2012;189 (12):5659–66. link1

[47] Zhao Y, Guo H, Qiao G, Zucker M, Langdon WY, Zhang J. E3 ubiquitin ligase Cblb regulates thymic-derived CD4+ CD25+ regulatory T cell development by targeting Foxp3 for ubiquitination. J Immunol 2015;194(4):1639–45. link1

[48] Wang L, Kumar S, Dahiya S, Wang F, Wu J, Newick K, et al. Ubiquitin-specific protease-7 inhibition impairs Tip60-dependent Foxp3+ T-regulatory cell function and promotes antitumor immunity. EBioMedicine 2016;13:99–112. link1

[49] Li Y, Lu Y, Wang S, Han Z, Zhu F, Ni Y, et al. USP21 prevents the generation of Thelper-1-like Treg cells. Nat Commun 2016;7(1):13559. link1

[50] van Loosdregt J, Vercoulen Y, Guichelaar T, Gent YY, Beekman JM, van Beekum O, et al. Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood 2010;115(5):965–74. link1

[51] Li B, Samanta A, Song X, Iacono KT, Bembas K, Tao R, et al. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc Natl Acad Sci USA 2007;104(11):4571–6. link1

[52] Du T, Nagai Y, Xiao Y, Greene MI, Zhang H. Lysosome-dependent p300/FOXP3 degradation and limits Treg cell functions and enhances targeted therapy against cancers. Exp Mol Pathol 2013;95(1):38–45. link1

[53] Chan HM, La Thangue NB. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci 2001;114(Pt 13):2363–73. link1

[54] Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 2006;5(9):769–84. link1

[55] Li B, Samanta A, Song X, Iacono KT, Brennan P, Chatila TA, et al. FOXP3 is a homo-oligomer and a component of a supramolecular regulatory complex disabled in the human XLAAD/IPEX autoimmune disease. Int Immunol 2007;19(7):825–35. link1

[56] Fischle W, Dequiedt F, Fillion M, Hendzel MJ, Voelter W, Verdin E. Human HDAC7 histone deacetylase activity is associated with HDAC3 in vivo. J Biol Chem 2001;276(38):35826–35. link1

[57] Beier UH, Wang L, Han R, Akimova T, Liu Y, Hancock WW. Histone deacetylases 6 and 9 and sirtuin-1 control Foxp3+ regulatory T cell function through shared and isoform-specific mechanisms. Sci Signal 2012;5(229):ra45. link1

[58] van Loosdregt J, Brunen D, Fleskens V, Pals CE, Lam EW, Coffer PJ. Rapid temporal control of Foxp3 protein degradation by sirtuin-1. PLoS ONE 2011;6 (4):e19047. link1

[59] Xie X, Stubbington MJ, Nissen JK, Andersen KG, Hebenstreit D, Teichmann SA, et al. The regulatory T cell lineage factor Foxp3 regulates gene expression through several distinct mechanisms mostly independent of direct DNA binding. PLoS Genet 2015;11(6):e1005251. link1

[60] Samanta A, Li B, Song X, Bembas K, Zhang G, Katsumata M, et al. TGF-b and IL-6 signals modulate chromatin binding and promoter occupancy by acetylated FOXP3. Proc Natl Acad Sci USA 2008;105(37):14023–7. link1

[61] Morawski PA, Mehra P, Chen C, Bhatti T, Wells AD. Foxp3 protein stability is regulated by cyclin-dependent kinase 2. J Biol Chem 2013;288 (34):24494–502. link1

[62] Li Z, Lin F, Zhuo C, Deng G, Chen Z, Yin S, et al. Pim1 kinase phosphorylates the human transcription factor FOXP3 at serine 422 to negatively regulate its activity under inflammation. J Biol Chem 2014;289(39):26872–81. link1

[63] Nie H, Zheng Y, Li R, Guo TB, He D, Fang L, et al. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-a in rheumatoid arthritis. Nat Med 2013;19(3):322–8. link1

[64] Basu S, Golovina T, Mikheeva T, June CH, Riley JL. Cutting edge: Foxp3- mediated induction of Pim 2 allows human T regulatory cells to preferentially expand in rapamycin. J Immunol 2008;180(9):5794–8. link1

[65] Nakahira K, Morita A, Kim NS, Yanagihara I. Phosphorylation of FOXP3 by LCK downregulates MMP9 expression and represses cell invasion. PLoS ONE 2013;8(10):e77099. link1

[66] Dikic I, Wakatsuki S, Walters KJ. Ubiquitin-binding domains—from structures to functions. Nat Rev Mol Cell Biol 2009;10(10):659–71. link1

[67] Komander D, Rape M. The ubiquitin code. Annu Rev Biochem 2012;81 (1):203–29. link1

[68] Chen L, Wu J, Pier E, Zhao Y, Shen Z. mTORC2-PKBa/AKT1 serine 473 phosphorylation axis is essential for regulation of FOXP3 stability by chemokine CCL3 in psoriasis. J Invest Dermatol 2013;133(2):418–28. link1

[69] Abu-Eid R, Samara RN, Ozbun L, Abdalla MY, Berzofsky JA, Friedman KM, et al. Selective inhibition of regulatory T cells by targeting the PI3K-AKT pathway. Cancer Immunol Res 2014;2(11):1080–9. link1

[70] Chen Z, Barbi J, Bu S, Yang HY, Li Z, Gao Y, et al. The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity 2013;39(2):272–85. link1

[71] van Loosdregt J, Fleskens V, Fu J, Brenkman AB, Bekker CP, Pals CE, et al. Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity 2013;39(2):259–71. link1

[72] Geoghegan V, Guo A, Trudgian D, Thomas B, Acuto O. Comprehensive identification of arginine methylation in primary T cells reveals regulatory roles in cell signalling. Nat Commun 2015;6(1):6758. link1

[73] Stopa N, Krebs JE, Shechter D. The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond. Cell Mol Life Sci 2015;72 (11):2041–59. link1

[74] Tao JH, Cheng M, Tang JP, Liu Q, Pan F, Li XP. Foxp3, regulatory T cell, and autoimmune diseases. Inflammation 2017;40(1):328–39. link1

[75] Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res 2017;27(1):109–18. link1

[76] Tao R, Hancock WW. Regulating regulatory T cells to achieve transplant tolerance. Hepatobiliary Pancreat Dis Int 2007;6(4):348–57. link1

[77] Tao R, de Zoeten EF, Ozkaynak E, Chen C, Wang L, Porrett PM, et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med 2007;13(11):1299–307. link1

[78] Saouaf SJ, Li B, Zhang G, Shen Y, Furuuchi N, Hancock WW, et al. Deacetylase inhibition increases regulatory T cell function and decreases incidence and severity of collagen-induced arthritis. Exp Mol Pathol 2009;87(2):99–104. link1

[79] Nagai Y, Limberis MP, Zhang H. Modulation of Treg function improves adenovirus vector-mediated gene expression in the airway. Gene Ther 2014;21(2):219–24. link1

[80] Zhang ZY, Schluesener HJ. HDAC inhibitor MS-275 attenuates the inflammatory reaction in rat experimental autoimmune prostatitis. Prostate 2012;72(1):90–9. link1

[81] Wang L, Tao R, Hancock WW. Using histone deacetylase inhibitors to enhance Foxp3+ regulatory T-cell function and induce allograft tolerance. Immunol Cell Biol 2009;87(3):195–202. link1

[82] Thomas A, Rajan A, Szabo E, Tomita Y, Carter CA, Scepura B, et al. A phase I/II trial of belinostat in combination with cisplatin, doxorubicin, and cyclophosphamide in thymic epithelial tumors: a clinical and translational study. Clin Cancer Res 2014;20(21):5392–402. link1

[83] Terranova-Barberio M, Thomas S, Ali N, Pawlowska N, Park J, Krings G, et al. HDAC inhibition potentiates immunotherapy in triple negative breast cancer. Oncotarget 2017;8(69):114156–72. link1

[84] Murali R, Cheng X, Berezov A, Du X, Schön A, Freire E, et al. Disabling TNF receptor signaling by induced conformational perturbation of tryptophan-107. Proc Natl Acad Sci USA 2005;102(31):10970–5. link1

[85] Bin Dhuban K, d’Hennezel E, Nagai Y, Xiao Y, Shao S, Istomine R, et al. Suppression by human FOXP3+ regulatory T cells requires FOXP3–Tip60 interactions. Sci Immunol 2017;2(12):eaai9297. link1

[86] Wang D, Quiros J, Mahuron K, Pai CC, Ranzani V, Young A, et al. Targeting EZH2 reprograms intratumoral regulatory T cells to enhance cancer immunity. Cell Rep 2018;23(11):3262–74. link1

[87] Li Y, Strick-Marchand H, Lim AI, Ren J, Masse-Ranson G, Li D, et al. Regulatory T cells control toxicity in a humanized model of IL-2 therapy. Nat Commun 2017;8(1):1762. link1

[88] Trotta E, Bessette PH, Silveria SL, Ely LK, Jude KM, Le DT, et al. A human anti-IL- 2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nat Med 2018;24(7):1005–14. link1

[89] Biswas S, Rao CM. Epigenetics in cancer: fundamentals and beyond. Pharmacol Ther 2017;173:118–34. link1

[90] Pfister SX, Ashworth A. Marked for death: targeting epigenetic changes in cancer. Nat Rev Drug Discov 2017;16(4):241–63. link1

[91] Yang Y, Bedford MT. Protein arginine methyltransferases and cancer. Nat Rev Cancer 2013;13(1):37–50. link1

[92] Lozano T, Villanueva L, Durántez M, Gorraiz M, Ruiz M, Belsúe V, et al. Inhibition of FOXP3/NFAT interaction enhances T cell function after TCR stimulation. J Immunol 2015;195(7):3180–9. link1

[93] Lozano T, Gorraiz M, Lasarte-Cía A, Ruiz M, Rabal O, Oyarzabal J, et al. Blockage of FOXP3 transcription factor dimerization and FOXP3/AML1 interaction inhibits T regulatory cell activity: sequence optimization of a peptide inhibitor. Oncotarget 2017;8(42):71709–24. link1

[94] Mathur D, Prakash S, Anand P, Kaur H, Agrawal P, Mehta A, et al. PEPlife: a repository of the half-life of peptides. Sci Rep 2016;6:36617. link1

[95] Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide-based drugs. Chem Biol Drug Des 2013;81(1):136–47. link1

Related Research