Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2021, Volume 7, Issue 10 doi: 10.1016/j.eng.2020.10.012

A Smart Procedure for the Femtosecond Laser-Based Fabrication of a Polymeric Lab-on-a-Chip for Capturing Tumor Cell

a Department of Physics, University of Bari "Aldo Moro", Bari 70126, Italy
b Institute for Photonics and Nanotechnologies, Bari 70126, Italy
c Institute of Nanotechnology, Lecce 73100, Italy
d STMicroelectronics, Lecce 73100, Italy

Received: 2020-06-25 Revised: 2020-10-13 Accepted: 2020-10-29 Available online: 2020-12-01

Next Previous

Abstract

Rapid prototyping methods for the design and fabrication of polymeric labs-on-a-chip are on the rise, as they allow high degrees of precision and flexibility. For example, a microfluidic platform may require an optimization phase inwhich it could be necessary to continuously modify the architecture and geometry; however, this is only possible if easy, controllable fabrication methods and low-cost materials are available. In this paper, we describe the realization process of a microfluidic tool, from the computer-aided design (CAD) to the proof-of-concept application as a capture device for circulating tumor cells (CTCs). The entire platform was realized in polymethyl methacrylate (PMMA), combining femtosecond (fs) laser and micromilling fabrication technologies. The multilayer device was assembled through a facile and low-cost solvent-assisted method. A serpentine microchannel was then directly biofunctionalized by immobilizing capture probes able to distinguish cancer from non-cancer cells without labeling. The low material costs, customizable methods, and biological application of the realized platform make it a suitable model for industrial exploitation and applications at the point of care.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

References

[ 1 ] Cao L, Cui X, Hu J, Li Z, Choi JR, Yang Q, et al. Advances in digital polymerase chain reaction (dPCR) and its emerging biomedical applications. Biosens Bioelectron 2017;90:459–74. link1

[ 2 ] Cereda M, Cocci A, Cucchi D, Raia L, Pirola D, Bruno L, et al. Q3: a compact device for quick, high precision qPCR. Sensors 2018;18(8):2583. link1

[ 3 ] Ocaña-González JA, Fernández-Torres R, Bello-López MÁ, Ramos-Payán M. New developments in microextraction techniques in bioanalysis. A review. Anal Chim Acta 2016;905:8–23. link1

[ 4 ] Qasaimeh MA, Wu YCC, Bose S, Menachery A, Talluri S, Gonzalez G, et al. Isolation of circulating plasma cells in multiple myeloma using CD138 antibody-based capture in a microfluidic device. Sci Rep 2017;7(1):45681. link1

[ 5 ] Edd JF, Mishra A, Dubash TD, Herrera S, Mohammad R, Williams EK, et al. Microfluidic concentration and separation of circulating tumor cell clusters from large blood volumes. Lab Chip 2020;20(3):558–67. link1

[ 6 ] Yap TA, Lorente D, Omlin A, Olmos D, de Bono JS. Circulating tumor cells: a multifunctional biomarker. Clin Cancer Res 2014;20(10):2553–68. link1

[ 7 ] Park MH, Reátegui E, Li W, Tessier SN, Wong KHK, Jensen AE, et al. Enhanced isolation and release of circulating tumor cells using nanoparticle binding and ligand exchange in a microfluidic chip. J Am Chem Soc 2017;139(7):2741–9. link1

[ 8 ] Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 2007;450(7173):1235–9. link1

[ 9 ] Primiceri E, Chiriacò MS, Notarangelo FM, Crocamo A, Ardissino D, Cereda M, et al. Key enabling technologies for point-of-care diagnostics. Sensors 2018;18 (11):3607. link1

[10] Guo J. Smartphone-powered electrochemical biosensing dongle for emerging medical IoTs application. IEEE Trans Industr Inf 2018;14(6):2592–7. link1

[11] Guo J. Uric acid monitoring with a smartphone as the electrochemical analyzer. Anal Chem 2016;88(24):11986–9. link1

[12] Guo J, Ma X. Simultaneous monitoring of glucose and uric acid on a single test strip with dual channels. Biosens Bioelectron 2017;94:415–9. link1

[13] Guo J, Jiang D, Feng S, Ren C, Guo J. m-NMR at the point of care testing. Electrophoresis 2020;41(5–6):319–27. link1

[14] Guo J, Zeng F, Guo J, Ma X. Preparation and application of microfluidic SERS substrate: challenges and future perspectives. J Mater Sci Technol 2020;37:96–103. link1

[15] Zhao W, Tian S, Huang L, Liu K, Dong L, Guo J. A smartphone-based biomedical sensory system. Analyst 2020;145(8):2873–91. link1

[16] Falk T, Mai D, Bensch R, Çiçek Ö, Abdulkadir A, Marrakchi Y, et al. U-Net: deep learning for cell counting, detection, and morphometry. Nat Methods 2019;16 (1):67–70. link1

[17] Pugliese M, Ferrara F, Bramanti AP, Gigli G, Maiorano V. In-plane cost-effective magnetically actuated valve for microfluidic applications. Smart Mater Struct 2017;26(4):26. link1

[18] Chiriacò MS, Bianco M, Amato F, Primiceri E, Ferrara F, Arima V, et al. Fabrication of interconnected multilevel channels in a monolithic SU-8 structure using a LOR sacrificial layer. Microelectron Eng 2016;164:30–5. link1

[19] Abgrall P, Gué AM. Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review. J Micromech Microeng 2007;17(5):R15–49. link1

[20] Schönleber A, van Smaalen S, Larsen FK. Orientational disorder in K-cobalt (III) sepulchrate trinitrate. Acta Crystallogr C 2010;66(Pt 4):m107–9. link1

[21] Gervais T, El-Ali J, Günther A, Jensen KF. Flow-induced deformation of shallow microfluidic channels. Lab Chip 2006;6(4):500–7. link1

[22] Waheed S, Cabot JM, Macdonald NP, Lewis T, Guijt RM, Paull B, et al. 3D printed microfluidic devices: enablers and barriers. Lab Chip 2016;16 (11):1993–2013. link1

[23] Volpe A, Paiè P, Ancona A, Osellame R. Polymeric fully inertial lab-on-a-chip with enhanced-throughput sorting capabilities. Microfluid Nanofluid 2019;23 (3):37. link1

[24] Volpe A, Gaudiuso C, Ancona A. Sorting of particles using inertial focusing and laminar vortex technology: a review. Micromachines 2019;10(9):594. link1

[25] Sima FN, Sugioka K, Vazquez RM, Osellame R, Kelemen L, Ormos P. Threedimensional femtosecond laser processing for lab-on-a-chip applications. Nanophotonics 2018;7(3):613–34. link1

[26] Wang H, Zhang YL, Wang W, Ding H, Sun HB. On-chip laser processing for the development of multifunctional microfluidic chips. Laser Photonics Rev 2017;11(2):1600116. link1

[27] Martínez Vázquez R, Trotta G, Volpe A, Bernava G, Basile V, Paturzo M, et al. Rapid prototyping of plastic lab-on-a-chip by femtosecond laser micromachining and removable insert microinjection molding. Micromachines 2017;8(11):328. link1

[28] Trotta G, Volpe A, Ancona A, Fassi I. Flexible micro manufacturing platform for the fabrication of PMMA microfluidic devices. Journal of Manuf Process 2018;35:107–17. link1

[29] Faustino V, Catarino SO, Lima R, Minas G. Biomedical microfluidic devices by using low-cost fabrication techniques: a review. J Biomech 2016;49 (11):2280–92. link1

[30] Guckenberger DJ, de Groot TE, Wan AMD, Beebe DJ, Young EWK. Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 2015;15(11):2364–78. link1

[31] Ogon´ czyk D, Wagrzyn J, Jankowski P, Dabrowski B, Garstecki P. Bonding of microfluidic devices fabricated in polycarbonate. Lab Chip 2010;10 (10):1324–7. link1

[32] Klank H, Kutter JP, Geschke O. CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab Chip 2002;2(4):242–6. link1

[33] Matellan C, del Rio HA. Cost-effective rapid prototyping and assembly of poly (methyl methacrylate) microfluidic devices. Sci Rep 2018;8(1):8. link1

[34] Yu H, Chong ZZ, Tor SB, Liu E, Loh NH. Low temperature and deformation-free bonding of PMMA microfluidic devices with stable hydrophilicity via oxygen plasma treatment and PVA coating. RSC Adv 2015;5(11):8377–88. link1

[35] Volpe A, Di Niso F, Gaudiuso C, De Rosa A, Vázquez RM, Ancona A, et al. Welding of PMMA by a femtosecond fiber laser. Opt Express 2015;23 (4):4114–24. link1

[36] Vlachopoulou ME, Tserepi A, Pavli P, Argitis P, Sanopoulou M, Misiakos K. A low temperature surface modification assisted method for bonding plastic substrates. J Micromech Microeng 2009;19(1):19. link1

[37] Ali U, Karim KJBA, Buang NA. A review of the properties and applications of poly(methyl methacrylate) (PMMA). Polym Rev 2015;55 (4):678–705. link1

[38] Bamshad A, Nikfarjam A, Khaleghi H. A new simple and fast thermally-solvent assisted method to bond PMMA–PMMA in micro-fluidics devices. J Micromech Microeng 2016;26(6):065017. link1

[39] Pipatpanukul C, Amarit R, Somboonkaew A, Sutapun B, Vongsakulyanon A, Kitpoka P, et al. Microfluidic PMMA-based microarray sensor chip with imaging analysis for ABO and RhD blood group typing. Vox Sang 2016;110 (1):60–9. link1

[40] Fixe F, Dufva M, Telleman P, Christensen CBV. Functionalization of poly(methyl methacrylate) (PMMA) as a substrate for DNA microarrays. Nucleic Acids Res 2004;32(1):e9. link1

[41] Reichenbach IG, Bohley M, Sousa FJP, Aurich JC. Micromachining of PMMA—manufacturing of burr-free structures with single-edge ultra-small micro end mills. Int J Adv Manuf Technol 2018;96(9–12):3665–77. link1

[42] Boral D, Vishnoi M, Liu HN, Yin W, Sprouse ML, Scamardo A, et al. Molecular characterization of breast cancer CTCs associated with brain metastasis. Nat Commun 2017;8(1):196. link1

[43] Winter MJ, Nagtegaal ID, van Krieken JHJM, Litvinov SV. The epithelial cell adhesion molecule (Ep-CAM) as a morphoregulatory molecule is a tool in surgical pathology. Am J Pathol 2003;163(6):2139–48. link1

[44] Wei Q, Luo W, Chiang S, Kappel T, Mejia C, Tseng D, et al. Imaging and sizing of single DNA molecules on a mobile phone. ACS Nano 2014;8 (12):12725–33. link1

[45] Kuan DH, Wang IS, Lin JR, Yang CH, Huang CH, Lin YH, et al. A microfluidic device integrating dual CMOS polysilicon nanowire sensors for on-chip whole blood processing and simultaneous detection of multiple analytes. Lab Chip 2016;16(16):3105–13. link1

[46] Srinivasan M, Gjengedal H, Cattani-Lorente M, Moussa M, Durual S, Schimmel M, et al. CAD/CAM milled complete removable dental prostheses: an in vitro evaluation of biocompatibility, mechanical properties, and surface roughness. Dent Mater J 2018;37(4):526–33. link1

[47] Markou A, Lazaridou M, Paraskevopoulos P, Chen S, S´wierczewska M, Budna J, et al. Multiplex gene expression profiling of in vivo isolated circulating tumor cells in high-risk prostate cancer patients. Clin Chem 2018;64 (2):297–306. link1

[48] Lowes LE, Goodale D, Keeney M, Allan AL. Image cytometry analysis of circulating tumor cells. In: Darzynkiewicz Z, Holden E, Orfao A, Telford W, Wlodkowic D, editors. Methods in cell biology. New York: Academic Press; 2011. p. 261–90. link1

Related Research