Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 16, Issue 9 doi: 10.1016/j.eng.2020.11.010

Fluorescence nanoscopy in neuroscience

Center for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

Received: 2020-07-04 Revised: 2020-11-10 Accepted: 2020-11-30 Available online: 2021-05-03

Next Previous

Abstract

Fluorescence nanoscopy provides imaging techniques that overcome the diffraction-limited resolution barrier in light microscopy, thereby opening up a new area of research in biomedical imaging in fields such as neuroscience. Here, we review the foremost fluorescence nanoscopy techniques, including descriptions of their applications in elucidating protein architectures and mobility, the real-time determination of synaptic parameters involved in neural processes, three-dimensional imaging, and the tracking of nanoscale neural activity. We conclude by discussing the prospects of fluorescence nanoscopy, with a particular focus on its deployment in combination with related techniques (e.g., machine learning) in neuroscience.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

References

[ 1 ] Purves D, Augustine GJ, Fitzpatrick D, Hall WC, Lamantia AS, McNamara JO, et al. Neuroscience. 3rd ed. Massachusetts: Sinauer Associates Inc Publishers; 2004. link1

[ 2 ] Zhou Q, Lai Y, Bacaj T, Zhao M, Lyubimov AY, Uervirojnangkoorn M, et al. Architecture of the synaptotagmin–SNARE machinery for neuronal exocytosis. Nature 2015;525(7567):62–7. link1

[ 3 ] Südhof TC, Rothman JE. Membrane fusion: grappling with SNARE and SM proteins. Science 2009;323(5913):474–7. link1

[ 4 ] Hinrichsen L, Meyerholz A, Groos S, Ungewickell EJ. Bending a membrane: how clathrin affects budding. Proc Natl Acad Sci USA 2006;103(23):8715–20. link1

[ 5 ] Thanawala MS, Regehr WG. Determining synaptic parameters using highfrequency activation. J Neurosci Methods 2016;264:136–52. link1

[ 6 ] Gustafsson MGL. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 2000;198(2):82–7. link1

[ 7 ] Gustafsson MGL, Shao L, Carlton PM, Wang CJR, Golubovskaya IN, Cande WZ, et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 2008;94(12):4957–70. link1

[ 8 ] Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P, et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 2008;320(5881):1332–6. link1

[ 9 ] Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 1994;19(11):780–2. link1

[10] Hell SW, Kroug M. Ground-state-depletion fluorscence microscopy: a concept for breaking the diffraction resolution limit. Appl Phys B 1995; 60(5):495–7. link1

[11] Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 2006;3(10):793–6. link1

[12] Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006;313(5793):1642–5. link1

[13] Hess ST, Girirajan TPK, Mason MD. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 2006;91(11): 4258–72. link1

[14] Balzarotti F, Eilers Y, Gwosch KC, Gynnå AH, Westphal V, Stefani FD, et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 2017;355(6325):606–12. link1

[15] Eilers Y, Ta H, Gwosch KC, Balzarotti F, Hell SW. MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution. Proc Natl Acad Sci USA 2018;115(24):6117–22. link1

[16] Gwosch KC, Pape JK, Balzarotti F, Hoess P, Ellenberg J, Ries J, et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat Methods 2020;17(2):217–24. link1

[17] Sigal YM, Zhou R, Zhuang X. Visualizing and discovering cellular structures with super-resolution microscopy. Science 2018;361(6405):880–7. link1

[18] Valeur B, Berberan-Santos MN. Molecular fluorescence: principles and applications. 2nd ed. Weinheim: Wiley–VCH Verlag GmbH; 2012. link1

[19] Gu M. Principles of three-dimensional imaging in confocal microscopes. Singapore: World Scientific; 1996. link1

[20] Zipfel WR, Williams RM, Webb WW. Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 2003;21(11):1369–77. link1

[21] Gugel H, Bewersdorf J, Jakobs S, Engelhardt J, Storz R, Hell SW. Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in livecell microscopy. Biophys J 2004;87(6):4146–52. link1

[22] Wang BK, Barbiero M, Zhang QM, Gu M. Super-resolution optical microscope: principle, instrumentation, and application. Front Inf Technol Electron Eng 2019;20(5):608–30. link1

[23] Chen F, Tillberg PW, Boyden ES. Optical imaging. Expansion microscopy. Science 2015;347(6221):543–8. link1

[24] Tillberg PW, Chen F, Piatkevich KD, Zhao Y, Yu CC, English BP, et al. Proteinretention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat Biotechnol 2016;34(9):987–92. link1

[25] Chen F, Wassie AT, Cote AJ, Sinha A, Alon S, Asano S, et al. Nanoscale imaging of RNA with expansion microscopy. Nat Methods 2016;13(8):679–84. link1

[26] Zhao Y, Bucur O, Irshad H, Chen F, Weins A, Stancu AL, et al. Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy. Nat Biotechnol 2017;35(8):757–64. link1

[27] Murakami TC, Mano T, Saikawa S, Horiguchi SA, Shigeta D, Baba K, et al. A three-dimensional single-cell-resolution whole-brain atlas using CUBIC-X expansion microscopy and tissue clearing. Nat Neurosci 2018;21(4):625–37. link1

[28] Schneider J, Zahn J, Maglione M, Sigrist SJ, Marquard J, Chojnacki J, et al. Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics. Nat Methods 2015;12(9):827–30. link1

[29] Jones SA, Shim SH, He J, Zhuang X. Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 2011;8(6):499–505. link1

[30] Huang F, Hartwich TMP, Rivera-Molina FE, Lin Y, Duim WC, Long JJ, et al. Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms. Nat Methods 2013;10(7):653–8. link1

[31] Li D, Shao L, Chen BC, Zhang X, Zhang M, Moses B, et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 2015;349(6251):aab3500. link1

[32] Ehmann N, Sauer M, Kittel RJ. Super-resolution microscopy of the synaptic active zone. Front Cell Neurosci 2015;9:7. link1

[33] Liu KSY, Siebert M, Mertel S, Knoche E, Wegener S, Wichmann C, et al. RIMbinding protein, a central part of the active zone, is essential for neurotransmitter release. Science 2011;334(6062):1565–9. link1

[34] Ehmann N, van de Linde S, Alon A, Ljaschenko D, Keung XZ, Holm T, et al. Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states. Nat Commun 2014;5:4650. link1

[35] Sieber JJ, Willig KI, Heintzmann R, Hell SW, Lang T. The SNARE motif is essential for the formation of syntaxin clusters in the plasma membrane. Biophys J 2006;90(8):2843–51. link1

[36] Donnert G, Keller J, Medda R, Andrei MA, Rizzoli SO, Luhrmann R, et al. Macromolecular-scale resolution in biological fluorescence microscopy. Proc Natl Acad Sci USA 2006;103(31):11440–5. link1

[37] Kellner RR, Baier CJ, Willig KI, Hell SW, Barrantes FJ. Nanoscale organization of nicotinic acetylcholine receptors revealed by stimulated emission depletion microscopy. Neuroscience 2007;144(1):135–43. link1

[38] Kornau H, Schenker L, Kennedy M, Seeburg P. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 1995;269(5231):1737–40. link1

[39] Kim E, Naisbitt S, Hsueh YP, Rao A, Rothschild A, Craig AM, et al. GKAP, a novel synaptic protein that interacts with the guanylate kinase-like domain of the PSD-95/SAP90 family of channel clustering molecules. J Cell Biol 1997;136(3): 669–78.

[40] Naisbitt S, Kim E, Tu JC, Xiao B, Sala C, Valtschanoff J, et al. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 1999;23(3): 569–82. link1

[41] Xiao B, Tu JC, Petralia RS, Yuan JP, Doan A, Breder CD, et al. Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of homer-related, synaptic proteins. Neuron 1998;21(4):707–16. link1

[42] Dani A, Huang B, Bergan J, Dulac C, Zhuang X. Superresolution imaging of chemical synapses in the brain. Neuron 2010;68(5):843–56. link1

[43] MacGillavry H, Song Y, Raghavachari S, Blanpied T. Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic AMPA receptors. Neuron 2013;78(4):615–22. link1

[44] Tang AH, Chen H, Li TP, Metzbower SR, MacGillavry HD, Blanpied TA. A transsynaptic nanocolumn aligns neurotransmitter release to receptors. Nature 2016;536(7615):210–4. link1

[45] Fukata Y, Dimitrov A, Boncompain G, Vielemeyer O, Perez F, Fukata M. Local palmitoylation cycles define activity-regulated postsynaptic subdomains. J Cell Biol 2013;202(1):145–61. link1

[46] Masch JM, Steffens H, Fischer J, Engelhardt J, Hubrich J, Keller-Findeisen J, et al. Robust nanoscopy of a synaptic protein in living mice by organicfluorophore labeling. Proc Natl Acad Sci USA 2018;115(34):E8047–56. link1

[47] Xu K, Zhong G, Zhuang X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 2013;339(6118): 452–6. link1

[48] D’Este E, Kamin D, Göttfert F, El-Hady A, Hell S. STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons. Cell Rep 2015;10(8):1246–51. link1

[49] Zhong G, He J, Zhou R, Lorenzo D, Babcock HP, Bennett V, et al. Developmental mechanism of the periodic membrane skeleton in axons. eLife 2014;3: e04581.

[50] Chierico L, Joseph AS, Lewis AL, Battaglia G. Live cell imaging of membrane/cytoskeleton interactions and membrane topology. Sci Rep 2014;4:6056. link1

[51] Han B, Zhou R, Xia C, Zhuang X. Structural organization of the actin–spectrinbased membrane skeleton in dendrites and soma of neurons. Proc Natl Acad Sci USA 2017;114(32):E6678–85. link1

[52] D’Este E, Kamin D, Velte C, Göttfert F, Simons M, Hell SW. Subcortical cytoskeleton periodicity throughout the nervous system. Sci Rep 2016;6:22741. link1

[53] D’Este E, Kamin D, Balzarotti F, Hell SW. Ultrastructural anatomy of nodes of Ranvier in the peripheral nervous system as revealed by STED microscopy. Proc Natl Acad Sci USA 2017;114(2):E191–9. link1

[54] Westphal V, Rizzoli SO, Lauterbach MA, Kamin D, Jahn R, Hell SW. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 2008;320(5873):246–9. link1

[55] Yeung C, Shtrahman M, Wu XL. Stick-and-diffuse and caged diffusion: a comparison of two models of synaptic vesicle dynamics. Biophys J 2007;92(7): 2271–80. link1

[56] Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 2006;440(7086):935–9. link1

[57] Sigal Y, Speer C, Babcock H, Zhuang X. Mapping synaptic input fields of neurons with super-resolution imaging. Cell 2015;163(2):493–505. link1

[58] Berning S, Willig KI, Steffens H, Dibaj P, Hell SW. Nanoscopy in a living mouse brain. Science 2012;335(6068):551. link1

[59] Long X, Colonell J, Wong AM, Singer RH, Lionnet T. Quantitative mRNA imaging throughout the entire Drosophila brain. Nat Methods 2017;14(7): 703–6. link1

[60] Wu Y, Ruan H, Dong Z, Zhao R, Yu J, Tang X, et al. Fluorescent polymer dot-based multicolor stimulated emission depletion nanoscopy with a single laser beam pair for cellular tracking. Anal Chem 2020;92(17): 12088–96. link1

[61] Zhang M, Fu Z, Li C, Liu A, Peng D, Xue F, et al. Fast super-resolution imaging technique and immediate early nanostructure capturing by a photoconvertible fluorescent protein. Nano Lett 2020;20(4):2197–208. link1

[62] Ye Z, Yang W, Wang C, Zheng Y, Chi W, Liu X, et al. Quaternary piperazinesubstituted rhodamines with enhanced brightness for super-resolution imaging. J Am Chem Soc 2019;141(37):14491–5. link1

[63] Ye S, Guo J, Song J, Qu J. Achieving high-resolution of 21 nm for STED nanoscopy assisted by CdSe@ZnS quantum dots. Appl Phys Lett 2020;116(4): 041101. link1

[64] Li D, Ni X, Zhang X, Liu L, Qu J, Ding D, et al. Aggregation-induced emission luminogen-assisted stimulated emission depletion nanoscopy for superresolution mitochondrial visualization in live cells. Nano Res 2018;11(11): 6023–33. link1

[65] Zhang Z, Fang X, Liu Z, Liu H, Chen D, He S, et al. Semiconducting polymer dots with dual-enhanced NIR-IIa fluorescence for through-skull mouse-brain imaging. Angew Chem Int Ed Engl 2020;59(9):3691–8. link1

[66] Chen C, Wang F, Wen S, Su QP, Wu MCL, Liu Y, et al. Multi-photon nearinfrared emission saturation nanoscopy using upconversion nanoparticles. Nat Commun 2018;9(1):3290. link1

[67] Gu L, Li Y, Zhang S, Xue Y, Li W, Li D, et al. Molecular resolution imaging by repetitive optical selective exposure. Nat Methods 2019;16(11):1114–8. link1

[68] Cnossen J, Hinsdale T, Thorsen RØ, Siemons M, Schueder F, Jungmann R, et al. Localization microscopy at doubled precision with patterned illumination. Nat Methods 2020;17(1):59–63. link1

[69] Spahn C, Hurter F, Glaesmann M, Karathanasis C, Lampe M, Heilemann M. Protein-specific, multicolor and 3D STED imaging in cells with DNA-labeled antibodies. Angew Chem Int Ed Engl 2019;58(52):18835–8. link1

[70] Wang X, Allen WE, Wright MA, Sylwestrak EL, Samusik N, Vesuna S, et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 2018;361(6400):eaat5691. link1

[71] Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Yang JL, Ferrante TC, et al. Highly multiplexed subcellular RNA sequencing in situ. Science 2014; 343(6177):1360–3. link1

[72] Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 2015;348(6233): aaa6090. link1

[73] Shah S, Takei Y, Zhou W, Lubeck E, Yun J, Eng CHL, et al. Dynamics and spatial genomics of the nascent transcriptome by intron seqFISH. Cell 2018;174(2): 363–76.e16. link1

[74] Eng CHL, Lawson M, Zhu Q, Dries R, Koulena N, Takei Y, et al. Transcriptomescale super-resolved imaging in tissues by RNA seqFISH+. Nature 2019; 568(7751):235–9. link1

[75] Deisseroth K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci 2015;18(9):1213–25. link1

[76] Chen S, Weitemier AZ, Zeng X, He L, Wang X, Tao Y, et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 2018;359(6376):679–84. link1

[77] Yu H, Zhang Q, Gu M. Three-dimensional direct laser writing of biomimetic neuron structures. Opt Express 2018;26(24):32111–7. link1

[78] Gan Z, Cao Y, Evans RA, Gu M. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat Commun 2013;4:2061. link1

[79] Gruber A, Dräbenstedt A, Tietz C, Fleury L, Wrachtup J, von Borczyskowski C. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 1997;276(5321):2012–4. link1

[80] Barbiero M, Castelletto S, Gan X, Gu M. Spin-manipulated nanoscopy for single nitrogen-vacancy center localizations in nanodiamonds. Light Sci Appl 2017;6(11):e17085. link1

[81] Barry JF, Turner MJ, Schloss JM, Glenn DR, Song Y, Lukin MD, et al. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc Natl Acad Sci USA 2016;113(49):14133–8. link1

[82] Levene MJ, Dombeck DA, Kasischke KA, Molloy RP, Webb WW. In vivo multiphoton microscopy of deep brain tissue. J Neurophysiol 2004;91(4): 1908–12. link1

[83] Szabo V, Ventalon C, De Sars V, Bradley J, Emiliani V. Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope. Neuron 2014;84(6):1157–69. link1

[84] Low RJ, Gu Y, Tank DW. Cellular resolution optical access to brain regions in fissures: imaging medial prefrontal cortex and grid cells in entorhinal cortex. Proc Natl Acad Sci USA 2014;111(52):18739–44. link1

[85] Attardo A, Fitzgerald JE, Schnitzer MJ. Impermanence of dendritic spines in live adult CA1 hippocampus. Nature 2015;523(7562):592–6. link1

[86] Horton NG, Wang K, Kobat D, Clark CG, Wise FW, Schaffer CB, et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat Photonics 2013;7(3):205–9. link1

[87] Kobat D, Durst ME, Nishimura N, Wong AW, Schaffer CB, Xu C. Deep tissue multiphoton microscopy using longer wavelength excitation. Opt Express 2009;17(16):13354–64. link1

[88] Theer P, Denk W. On the fundamental imaging-depth limit in two-photon microscopy. J Opt Soc Am A 2006;23(12):3139–49. link1

[89] Liu B, Lee HJ, Zhang D, Liao CS, Ji N, Xia Y, et al. Label-free spectroscopic detection of membrane potential using stimulated Raman scattering. Appl Phys Lett 2015;106(17):173704. link1

[90] Lee HJ, Zhang D, Jiang Y, Wu X, Shih PY, Liao CS, et al. Label-free vibrational spectroscopic imaging of neuronal membrane potential. J Phys Chem Lett 2017;8(9):1932–6. link1

[91] Fu D, Yang W, Xie XS. Label-free imaging of neurotransmitter acetylcholine at neuromuscular junctions with stimulated Raman scattering. J Am Chem Soc 2017;139(2):583–6. link1

[92] Ichimura T, Hayazawa N, Hashimoto M, Inouye Y, Kawata S. Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging. Phys Rev Lett 2004;92(22):220801. link1

[93] Lin J, Zi Jian Er K, Zheng W, Huang Z. Radially polarized tip-enhanced nearfield coherent anti-Stokes Raman scattering microscopy for vibrational nanoimaging. Appl Phys Lett 2013;103(8):083705. link1

[94] Gong L, Wang H. Breaking the diffraction limit by saturation in stimulatedRaman-scattering microscopy: a theoretical study. Phys Rev A 2014;90(1): 013818. link1

[95] Gong L, Wang H. Suppression of stimulated Raman scattering by an electromagnetically-induced-transparency-like scheme and its application for super-resolution microscopy. Phys Rev A 2015;92(2):023828. link1

[96] Gong L, Zheng W, Ma Y, Huang Z. Saturated stimulated-Raman-scattering microscopy for far-field superresolution bioimaging. Phys Rev Appl 2019;11(3): 034041. link1

[97] Gong L, Zheng W, Ma Y, Huang Z. Higher-order coherent anti-Stokes Raman scattering microscopy realizes label-free super-resolution vibrational imaging. Nat Photonics 2020;14(2):115–22. link1

[98] Ji N, Milkie DE, Betzig E. Adaptive optics via pupil segmentation for highresolution imaging in biological tissues. Nat Methods 2010;7(2):141–7. link1

[99] Booth MJ. Wavefront sensorless adaptive optics for large aberrations. Opt Lett 2007;32(1):5–7. link1

[100] Burke D, Patton B, Huang F, Bewersdorf J, Booth MJ. Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy. Optica 2015;2(2):177–85. link1

[101] Tehrani KF, Xu J, Zhang Y, Shen P, Kner P. Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) using a genetic algorithm. Opt Express 2015;23(10):13677–92. link1

[102] Thomas B, Wolstenholme A, Chaudhari SN, Kipreos ET, Kner P. Enhanced resolution through thick tissue with structured illumination and adaptive optics. J Biomed Opt 2015;20(2):026006. link1

[103] Lenz MO, Sinclair HG, Savell A, Clegg JH, Brown ACN, Davis DM, et al. 3D stimulated emission depletion microscopy with programmable aberration correction. J Biophotonics 2014;7(1–2):29–36. link1

[104] Horisaki R, Takagi R, Tanida J. Learning-based imaging through scattering media. Opt Express 2016;24(13):13738–43. link1

[105] Nehme E, Weiss LE, Michaeli T, Schechtman Y. Deep-STORM: superresolution single-molecule microscopy by deep learning. Optica 2018;5(4): 458–64. link1

[106] Wang H, Rivenson Y, Jin Y, Wei Z, Gao R, Günaydın H, et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nat Methods 2019;16(1):103–10. link1

[107] Ren H, Shao W, Li Y, Salim F, Gu M. Three-dimensional vectorial holography based on machine learning inverse design. Sci Adv 2020;6(16):eaaz4261. link1

[108] Goi E, Zhang Q, Chen X, Luan H, Gu M. Perspective on photonic memristive neuromorphic computing. PhotoniX 2020;1(1):3. link1

[109] Gu M, Fang X, Ren H, Goi E. Optically digitalized holography: a perspective for all-optical machine learning. Engineering 2019;5(3):363–5. link1

[110] Zhang Q, Yu H, Barbiero M, Wang B, Gu M. Artificial neural networks enabled by nanophotonics. Light Sci Appl 2019;8:42. link1

[111] Goi E, Chen X, Zhang Q, Cumming BP, Schoenhardt S, Luan H, et al. Nanoprinted high-neuron-density optical linear perceptrons performing near-infrared inference on a CMOS chip. Light Sci Appl 2021;10:40. link1

Related Research