Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 14, Issue 7 doi: 10.1016/j.eng.2020.11.014

Taming Electrons in Pt/C Catalysts to Boost the Mesokinetics of Hydrogen Production

a State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
b Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
c Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim N-7491, Norway

# These authors contributed equally to this work.

Received: 2020-04-30 Revised: 2020-09-28 Accepted: 2020-11-10 Available online: 2022-04-16

Next Previous

Abstract

Taming the electron transfer across metal–support interfaces appears to be an attractive yet challenging methodology to boost catalytic properties. Herein, we demonstrate a precise engineering strategy for the carbon surface chemistry of Pt/C catalysts—that is, for the electron-withdrawing/donating oxygen-containing groups on the carbon surface—to fine-tune the electrons of the supported metal nanoparticles. Taking the ammonia borane hydrolysis as an example, a combination of density functional theory (DFT) calculations, advanced characterizations, and kinetics and isotopic analyses reveals quantifiable relationships among the carbon surface chemistry, Pt charge state and binding energy, activation entropy/enthalpy, and resultant catalytic activity. After decoupling the influences of other factors, the Pt charge is unprecedentedly identified as an experimentally measurable descriptor of the Pt active site, contributing to a 15-fold increment in the hydrogen generation rate. Further incorporating the Pt charge with the number of Pt active sites, a mesokinetics model is proposed for the first time that can individually quantify the contributions of the electronic and geometric properties to precisely predict the catalytic performance. Our results demonstrate a potentially groundbreaking methodology to design and manipulate metal–carbon catalysts with desirable properties.

SupplementaryMaterials

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

References

[ 1 ] Pakhare D, Spivey J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem Soc Rev 2014;43(22):7813–37. link1

[ 2 ] Yu W, Porosoff MD, Chen JG. Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem Rev 2012;112(11):5780–817. link1

[ 3 ] Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH. Towards the computational design of solid catalysts. Nat Chem 2009;1(1):37–46. link1

[ 4 ] Campbell CT. Electronic perturbations. Nat Chem 2012;4(8):597–8. link1

[ 5 ] Tauster SJ. Strong metal–support interactions. Acc Chem Res 1987;20 (11):389–94. link1

[ 6 ] Jackson C, Smith GT, Inwood DW, Leach AS, Whalley PS, Callisti M, et al. Electronic metal–support interaction enhanced oxygen reduction activity and stability of boron carbide supported platinum. Nat Commun 2017;8(1):15802. link1

[ 7 ] Pan CJ, Tsai MC, Su WN, Rick J, Akalework NG, Agegnehu AK, et al. Tuning/exploiting strong metal–support interaction (SMSI) in heterogeneous catalysis. J Taiwan Inst Chem Eng 2017;74:154–86. link1

[ 8 ] Zhu J, Holmen A, Chen D. Carbon nanomaterials in catalysis: proton affinity, chemical and electronic properties, and their catalytic consequences. ChemCatChem 2013;5(2):378–401. link1

[ 9 ] De Jong KP, Geus JW. Carbon nanofibers: catalytic synthesis and applications. Catal Rev 2000;42(4):481–510. link1

[10] Rao RG, Blume R, Hansen TW, Fuentes E, Dreyer K, Moldovan S, et al. Interfacial charge distributions in carbon–supported palladium catalysts. Nat Commun 2017;8(1):340. link1

[11] Gosselink RW, Xia W, Muhler M, de Jong KP, Bitter JH. Enhancing the activity of Pd on carbon nanofibers for deoxygenation of amphiphilic fatty acid molecules through support polarity. ACS Catal 2013;3(10):2397–402. link1

[12] Chen W, Ji J, Duan X, Qian G, Li P, Zhou X, et al. Unique reactivity in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane. Chem Commun (Camb) 2014;50(17):2142–4. link1

[13] Chen W, Duan X, Qian G, Chen D, Zhou X. Carbon nanotubes as support in the platinum-catalyzed hydrolytic dehydrogenation of ammonia borane. ChemSusChem 2015;8(17):2927–31. link1

[14] Cabiac A, Cacciaguerra T, Trens P, Durand R, Delahay G, Medevielle A, et al. Influence of textural properties of activated carbons on Pd/carbon catalysts synthesis for cinnamaldehyde hydrogenation. Appl Catal A Gen 2008;340 (2):229–35. link1

[15] Calvillo L, Gangeri M, Perathoner S, Centi G, Moliner R, Lázaro MJ. Effect of the support properties on the preparation and performance of platinum catalysts supported on carbon nanofibers. J Power Sources 2009;192(1):144–50. link1

[16] Boudart M. From the century of the rate equation to the century of the rate constants: a revolution in catalytic kinetics and assisted catalyst design. Catal Lett 2000;65(1):1–3. link1

[17] Dryer FL, Glassman I. High-temperature oxidation of CO and CH4. Symp (Int) Combust 1973;14(1):987–1003. link1

[18] Nikov I, Paev K. Palladium on alumina catalyst for glucose oxidation: reaction kinetics and catalyst deactivation. Catal Today 1995;24(1–2):41–7. link1

[19] Motagamwala AH, Ball MR, Dumesic JA. Microkinetic analysis and scaling relations for catalyst design. Annu Rev Chem Biomol Eng 2018;9(1):413–50. link1

[20] Matera S, Schneider WF, Heyden A, Savara A. Progress in accurate chemical kinetic modeling, simulations, and parameter estimation for heterogeneous catalysis. ACS Catal 2019;9(8):6624–47. link1

[21] Teschner D, Novell-Leruth G, Farra R, Knop-Gericke A, Schlögl R, Szentmiklósi L, et al. In situ surface coverage analysis of RuO2-catalysed HCl oxidation reveals the entropic origin of compensation in heterogeneous catalysis. Nat Chem 2012;4(9):739–45. link1

[22] Kim D, Resasco J, Yu Y, Asiri AM, Yang P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat Commun 2014;5(1):4948. link1

[23] Zambelli T, Wintterlin J, Trost J, Ertl G. Identification of the ‘‘active sites” of a surface-catalyzed reaction. Science 1996;273(5282):1688–90. link1

[24] Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007;317(5834):100–2. link1

[25] Chen W, Ji J, Feng X, Duan X, Qian G, Li P, et al. Mechanistic insight into sizedependent activity and durability in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane. J Am Chem Soc 2014;136(48):16736–9. link1

[26] Zhan WW, Zhu QL, Xu Q. Dehydrogenation of ammonia borane by metal nanoparticle catalysts. ACS Catal 2016;6(10):6892–905. link1

[27] Khalily MA, Eren H, Akbayrak S, Susapto HH, Biyikli N, Özkar S, et al. Facile synthesis of three-dimensional Pt–TiO2 nano-networks: a highly active catalyst for the hydrolytic dehydrogenation of ammonia–borane. Angew Chem Int Ed Engl 2016;55(40):12257–61. link1

[28] Aijaz A, Karkamkar A, Choi YJ, Tsumori N, Rönnebro E, Autrey T, et al. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal–organic framework: a double solvents approach. J Am Chem Soc 2012;134(34):13926–9. link1

[29] Frenkel AI, Wang Q, Marinkovic N, Chen JG, Barrio L, Si R, et al. Combining Xray absorption and X-ray diffraction techniques for in situ studies of chemical transformations in heterogeneous catalysis: advantages and limitations. J Phys Chem C 2011;115(36):17884–90. link1

[30] Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B Condens Matter 1993;47(1):558–61. link1

[31] Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquidmetal–amorphous-semiconductor transition in germanium. Phys Rev B Condens Matter 1994;49(20):14251–69. link1

[32] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 1996;6(1):15–50. link1

[33] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter 1996;54 (16):11169–86. link1

[34] Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77(18):3865–8. link1

[35] Blöchl PE. Projector augmented-wave method. Phys Rev B Condens Matter 1994;50(24):17953–79. link1

[36] Klimeš J, Bowler DR, Michaelides A. Chemical accuracy for the van der Waals density functional. J Phys Condens Matter 2010;22(2):022201. link1

[37] Thonhauser T, Cooper VR, Li S, Puzder A, Hyldgaard P, Langreth DC. Van der Waals density functional: self-consistent potential and the nature of the van der Waals bond. Phys Rev B Condens Matter 2007;76(12):125112. link1

[38] Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B Condens Matter 1976;13(12):5188. link1

[39] Blöchl PE, Jepsen O, Andersen OK. Improved tetrahedron method for Brillouinzone integrations. Phys Rev B Condens Matter 1994;49(23):16223. link1

[40] Henkelman G, Arnaldsson A, Jónsson H. A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 2006;36(3):354–60. link1

[41] Sanville E, Kenny SD, Smith R, Henkelman G. Improved grid-based algorithm for Bader charge allocation. J Comput Chem 2007;28(5):899–908. link1

[42] Byon HR, Gallant BM, Lee SW, Shao-Horn Y. Role of oxygen functional groups in carbon nanotube/graphene freestanding electrodes for high performance lithium batteries. Adv Funct Mater 2013;23(8):1037–45. link1

[43] Zhang T, He C, Sun F, Ding Y, Wang M, Peng L, et al. Co3O4 nanoparticles anchored on nitrogen-doped reduced graphene oxide as a multifunctional catalyst for H2O2 reduction, oxygen reduction and evolution reaction. Sci Rep 2017;7(1):43638. link1

[44] Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U. Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 2005;43(8):1731–42. link1

[45] Miller JT, Kropf AJ, Zha Y, Regalbuto JR, Delannoy L, Louis C, et al. The effect of gold particle size on Au–Au bond length and reactivity toward oxygen in supported catalysts. J Catal 2006;240(2):222–34. link1

[46] Jiang ZZ, Wang ZB, Gu DM, Smotkin ES. Carbon riveted Pt/C catalyst with high stability prepared by in situ carbonized glucose. Chem Commun (Camb) 2010;46(37):6998–7000. link1

[47] Zhou JH, Sui ZJ, Zhu J, Li P, Chen D, Dai YC, et al. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon 2007;45(4):785–96. link1

[48] Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T. Density functional theory in surface chemistry and catalysis. Proc Natl Acad Sci USA 2011;108(3):937–43. link1

[49] Chen W, Li D, Wang Z, Qian G, Sui Z, Duan X, et al. Reaction mechanism and kinetics for hydrolytic dehydrogenation of ammonia borane on a Pt/CNT catalyst. AIChE J 2017;63(1):60–5. link1

[50] Bond GC, Hooper AD, Slaa JC, Taylor AO. Kinetics of metal-catalyzed reactions of alkanes and the compensation effect. J Catal 1996;163(2):319–27. link1

[51] Guo Z, Chen Y, Li L, Wang X, Haller GL, Yang Y. Carbon nanotube-supported Ptbased bimetallic catalysts prepared by a microwave-assisted polyol reduction method and their catalytic applications in the selective hydrogenation. J Catal 2010;276(2):314–26. link1

[52] Vu H, Goncalves F, Philippe R, Lamouroux E, Corrias M, Kihn Y, et al. Bimetallic catalysis on carbon nanotubes for the selective hydrogenation of cinnamaldehyde. J Catal 2006;240(1):18–22. link1

[53] Toebes ML, Prinsloo FF, Bitter JH, van Dillen AJ, de Jong KP. Influence of oxygen-containing surface groups on the activity and selectivity of carbon nanofiber-supported ruthenium catalysts in the hydrogenation of cinnamaldehyde. J Catal 2003;214(1):78–87. link1

[54] Toebes ML, Zhang Y, Hájek J, Nijhuis TA, Bitter JH, van Dillen AJ, et al. Support effects in the hdrogenation of cnnamaldehyde over carbon nanofibersupported platinum catalysts: characterization and catalysis. J Catal 2004;226(1):215–25. link1

[55] Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 2004;108(46):17886–92. link1

[56] Coq B, Figueras F. Structure–activity relationships in catalysis by metals: some aspects of particle size, bimetallic and supports effects. Coordin Chem Rev 1998;178–180(Pt 2):1753–83. link1

Related Research