Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 12, Issue 5 doi: 10.1016/j.eng.2021.01.011

Plasma-Assisted Antimicrobial Finishing of Textiles: A Review

a Deakin University, Institute for Frontier Materials, Geelong, Victoria, 3216, Australia
b Textile Engineering Department, Yazd University, Yazd, Iran

Received: 2020-09-08 Revised: 2020-11-30 Accepted: 2021-01-19 Available online: 2021-04-01

Next Previous

Abstract

Owing to the ongoing pandemic, the importance of and demand for antimicrobial textiles have reached new heights. In addition to being used for medical purposes, antimicrobial textiles could be a self-defense entity against microbes for the general population. Because textiles are widely used, they can effectively be used to prevent the spread of microbes worldwide. The conventional antibacterial finishing process of textiles is the wet treatment method using either the pad–dry–cure or exhaustion techniques. However, the textile wet treatment industries are major contributors to worldwide pollution, which is extremely concerning. Given the current and near-future high demand, it is imperative to include plasma in antimicrobial finishing to achieve high efficiency in production, while retaining a safe environment. Hence, this paper reviews the rationale of plasma use in textile antimicrobial finishing through a critical analysis of recent studies and emphasizes the types and mechanisms of plasma techniques available for application.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

References

[ 1 ] Chauhan A, Das A, Kharkwal H, Kharkwal AC, Varma A. Impact of microorganisms on environment and health. In: Chauhan AK, Varma A, editors. Microbes: health and environment. New Delhi: I.K. International Publishing House Pvt. Ltd.; 2006. p. 1–12. link1

[ 2 ] Nayak R, Padhye R. Antimicrobial finishes for textiles. In: Paul R, editor. Functional finishes for textiles: improving comfort, performance and protection. Amsterdam: Woodhead Publishing Ltd. 2014. p. 361–85. link1

[ 3 ] Iyigundogdu ZU, Demir O, Asutay AB, Sahin F. Developing novel antimicrobial and antiviral textile products. Appl Biochem Biotechnol 2017;181 (3):1155–66. link1

[ 4 ] Son WK, Youk JH, Lee TS, Park WH. Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol Rapid Commun 2004;25(18):1632–7. link1

[ 5 ] Anita S, Ramachandran T, Rajendran R, Koushik CV, Mahalakshmi M. A study of the antimicrobial property of encapsulated copper oxide nanoparticles on cotton fabric. Text Res J 2011;81(10):1081–8. link1

[ 6 ] Cerkez I, Kocer HB, Worley SD, Broughton RM, Huang TS. N-halamine biocidal coatings via a layer-by-layer assembly technique. Langmuir 2011;27 (7):4091–7. link1

[ 7 ] Xing Y, Yang X, Dai J. Antimicrobial finishing of cotton textile based on water glass by sol–gel method. J Sol-Gel Sci Technol 2007;43 (2):187–92. link1

[ 8 ] Ferrero F, Periolatto M. Antimicrobial finish of textiles by chitosan UV-curing. J Nanosci Nanotechnol 2012;12(6):4803–10. link1

[ 9 ] Perelshtein I, Applerot G, Perkas N, Wehrschetz-Sigl E, Hasmann A, Guebitz GM, et al. Antibacterial properties of an in situ generated and simultaneously deposited nanocrystalline ZnO on fabrics. ACS Appl Mater Interfaces 2009;1 (2):361–6. link1

[10] Mazloumpour M, Malshe P, El-Shafei A, Hauser P. Conferring durable antimicrobial properties on nonwoven polypropylene via plasma-assisted graft polymerization of DADMAC. Surf Coat Technol 2013;224:1–7. link1

[11] Haji A, Naebe M. Cleaner dyeing of textiles using plasma treatment and natural dyes: a review. J Cleaner Prod 2020;265:121866. link1

[12] Cornelius C, McCord M, Bourham M, Hauser P. Atmospheric pressure plasma grafting of a vinyl-quaternary compound to nonwoven polypropylene and cotton. J Eng Fibers Fabrics 2018;13(3):45–58. link1

[13] Malshe P, Mazloumpour M, El-Shafei A, Hauser P. Functional military textile: plasma-induced graft polymerization of DADMAC for antimicrobial treatment on nylon-cotton blend fabric. Plasma Chem Plasma Process 2012;32(4):833–43. link1

[14] Tan LY, Sin LT, Bee ST, Ratnam CT, Woo KK, Tee TT, et al. A review of antimicrobial fabric containing nanostructures metal-based compound. J Vinyl Addit Technol 2019;25(S1):E3–E27. link1

[15] Gutarowska B, Michalski A. Microbial degradation of woven fabrics and protection against biodegradation. In: Jeon HY, editor. Woven fabrics. Rijeka: InTech; 2012. link1

[16] Haghi AK, Zaikov GE. Green nanofibers—production and limits. In: Wilkie CA, Geuskens G, Matos Lobo VM, editors. Handbook of research on functional materials: principles, capabilities, and limitations. Boca Raton: CRC Press; 2014. p. 11–104. link1

[17] Hamlyn PF. Talking rot and mildew. Textiles 1990;19(2):46–50. link1

[18] Ki HY, Kim JH, Kwon SC, Jeong SH. A study on multifunctional wool textiles treated with nano-sized silver. J Mater Sci 2007;42(19):8020–4. link1

[19] Lee HJ, Jeong SH. Bacteriostasis and skin innoxiousness of nanosize silver colloids on textile fabrics. Text Res J 2005;75(7):551–6. link1

[20] Dong H, Wang D, Sun G, Hinestroza JP. Assembly of metal nanoparticles on electrospun nylon 6 nanofibers by control of interfacial hydrogen-bonding interactions. Chem Mater 2008;20(21):6627–32. link1

[21] Sashina ES, Dubkova OI, Novoselov NP, Goralsky JJ, Szynkowska MI, Lesniewska E, et al. Silver nanoparticles on fibers and films of Bombyx mori silk fibroin. Russ J Appl Chem 2009;82(6):974–80. link1

[22] Ilic´ V, Šaponjic´ Z, Vodnik V, Potkonjak B, Jovancˇic´ P, Nedeljkovic´ J, et al. The influence of silver content on antimicrobial activity and color of cotton fabrics functionalized with Ag nanoparticles. Carbohydr Polym 2009;78 (3):564–9. link1

[23] Marcato PD, Nakasato G, Brocchi M, Melo PS, Huber SC, Ferreira IR, et al. Biogenic silver nanoparticles: antibacterial and cytotoxicity applied to textile fabrics. J Nano Res 2012;20:69–76. link1

[24] Lee HJ, Yeo SY, Jeong SH. Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J Mater Sci 2003;38(10):2199–204. link1

[25] Gouda M. Nano-zirconium oxide and nano-silver oxide/cotton gauze fabrics for antimicrobial and wound healing acceleration. J Ind Text 2012;41 (3):222–40. link1

[26] Morais DS, Guedes RM, Lopes MA. Antimicrobial approaches for textiles: from research to market. Materials 2016;9(6):498. link1

[27] Gao Y, Cranston R. Recent advances in antimicrobial treatments of textiles. Text Res J 2008;78(1):60–72. link1

[28] Son YA, Sun G. Durable antimicrobial nylon 66 fabrics: ionic interactions with quaternary ammonium salts. J Appl Polym Sci 2003;90(8):2194–9. link1

[29] Zhao T, Sun G. Antimicrobial finishing of wool fabrics with quaternary aminopyridinium salts. J Appl Polym Sci 2007;103(1):482–6. link1

[30] Shahidi S, Wiener J. Antibacterial agents in textile industry. In: Bobbarala V, editor. Antimicrobial agents. Rijeka: InTech; 2012. p. 387–406. link1

[31] Worley SD, Williams DE, Crawford RA. Halamine water disinfectants. Crit Rev Environ Control 1988;18(2):133–75. link1

[32] Vellingiri K, Ramachandran T, Senthilkumar M. Eco-friendly application of nano chitosan in antimicrobial coatings in the textile industry. Nanosci Nanotechnol Lett 2013;5(5):519–29. link1

[33] Abdel-Mohsen AM, Abdel-Rahman RM, Hrdina R, Imramovsky´ A, Burgert L, Aly AS. Antibacterial cotton fabrics treated with core-shell nanoparticles. Int J Biol Macromol 2012;50(5):1245–53. link1

[34] Lu YH, Chen YY, Lin H, Wang C, Yang ZD. Preparation of chitosan nanoparticles and their application to Antheraea pernyi silk. J Appl Polym Sci 2010;117(6):3362–9. link1

[35] Naebe M, Li Q, Onur A, Denning R. Investigation of chitosan adsorption onto cotton fabric with atmospheric helium/oxygen plasma pre-treatment. Cellulose 2016;23(3):2129–42. link1

[36] Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 2009;27(1):76–83. link1

[37] Vu NK, Zille A, Oliveira FR, Carneiro N, Souto AP. Effect of particle size on silver nanoparticle deposition onto dielectric barrier discharge (DBD) plasma functionalized polyamide fabric. Plasma Process Polym 2013;10(3): 285–96. link1

[38] Irfan M, Polonskyi O, Hinz A, Mollea C, Bosco F, Strunskus T, et al. Antibacterial, highly hydrophobic and semi transparent Ag/plasma polymer nanocomposite coating on cotton fabric obtained by plasma based codeposition. Cellulose 2019;26(16):8877–94. link1

[39] Zille A, Almeida L, Amorim T, Carneiro N, Esteves MF, Silva CJ, et al. Application of nanotechnology in antimicrobial finishing of biomedical textiles. Mater Res Express 2014;1(3):032003. link1

[40] Gilbert P, Moore LE. Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol 2005;99(4):703–15. link1

[41] Marini M, Bondi M, Iseppi R, Toselli M, Pilati F. Preparation and antibacterial activity of hybrid materials containing quaternary ammonium salts via sol– gel process. Eur Polym J 2007;43(8):3621–8. link1

[42] Lim SH, Hudson SM. Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals. J Macromol Sci Part C Polym Rev 2003;43(2):223–69. link1

[43] Gupta D, Khare SK, Laha A. Antimicrobial properties of natural dyes against Gram-negative bacteria. Color Technol 2004;120(4):167–71. link1

[44] Han S, Yang Y. Antimicrobial activity of wool fabric treated with curcumin. Dyes Pigments 2005;64(2):157–61. link1

[45] Bahtiyari MI, Yilmaz F. Investigation of antibacterial properties of wool fabrics dyed with pine cones. Ind Text 2018;69(5):369–74.

[46] Joshi M, Ali SW, Purwar R, Rajendran S. Ecofriendly antimicrobial finishing of textiles using bioactive agents based on natural products. Indian J Fibre Text Res 2009;34(3):295–304. link1

[47] Jang YJ, Lee JS. Antimicrobial treatment properties of Tencel Jacquard fabrics treated with ginkgo biloba extract and silicon softener. Fibers Polym 2010;11 (3):422–30. link1

[48] Ammayappan L, Jeyakodi Moses J. Study of antimicrobial activity of aloevera, chitosan, and curcumin on cotton, wool, and rabbit hair. Fibers Polym 2009;10(2):161–6. link1

[49] Kim HW, Kim BR, Rhee YH. Imparting durable antimicrobial properties to cotton fabrics using alginate–quaternary ammonium complex nanoparticles. Carbohydr Polym 2010;79(4):1057–62. link1

[50] Chirila L, Constantinescu GC, Danila A, Popescu A, Constantinescu RR, Sa˘ndulache IM. Functionalization of textile materials with bioactive polymeric systems based on propolis and cinnamon essential oil. Ind Text 2020;71(2):186–92.

[51] Petkova P, Francesko A, Fernandes MM, Mendoza E, Perelshtein I, Gedanken A, et al. Sonochemical coating of textiles with hybrid ZnO/chitosan antimicrobial nanoparticles. ACS Appl Mater Interfaces 2014;6(2):1164–72. link1

[52] Pinho E, Magalhães L, Henriques M, Oliveira R. Antimicrobial activity assessment of textiles: standard methods comparison. Ann Microbiol 2011;61(3):493–8. link1

[53] Virk RK, Ramaswamy GN, Bourham M, Bures BL. Plasma and antimicrobial treatment of nonwoven fabrics for surgical gowns. Text Res J 2004;74 (12):1073–9. link1

[54] ISO 20645:2004: Textile fabrics—determination of antibacterial activity—agar diffusion plate test. ISO standard. Geneva: International Organization for Standardization; 2004.

[55] AATCC 147:2004: Antibacterial activity assessment of textile materials: parallel streak method. US standard. New York: American Association of Textile Chemists and Colorists; 2004.

[56] JIS L 1902:2008: Testing for antibacterial activity and efficacy on textile products. Japanese Industrial Standard. Tokyo: Japanese Standard Association; 2008.

[57] Nikiforov AY, Deng X, Onyshchenko I, Vujosevic D, Vuksanovic V, Cvelbar U, et al. Atmospheric pressure plasma deposition of antimicrobial coatings on non-woven textiles. Eur Phys J Appl Phys 2016;75(2):24710. link1

[58] ISO 20743:2007: Textiles—determination of antibacterial activity of antibacterial finished products. ISO standard. Geneva: International Organization for Standardization; 2007.

[59] AATCC 100:2004: Antibacterial finishes on textile materials: Assessment of. US standard. New York: American Association of Textile Chemists and Colorists; 2004.

[60] Haji A, Haque ANMA, Naebe M. The effect of plasma treatment on dyeing of synthetic fibers. In: Rather LJ, Haji A, Shabbir M, editors. Innovative and emerging technologies for textile dyeing and finishing. Beverly: Scrivener Publishers; 2021. p. 213–33.

[61] Naebe M, Haque ANMA, Haji A. The effect of plasma treatment on dyeing of natural fibers. In: Rather LJ, Haji A, Shabbir M, editors. Innovative and emerging technologies for textile dyeing and finishing. Beverly: Scrivener Publishers; 2021. p. 191–212.

[62] Radetic M, Jovancic P, Puac N, Petrovic ZL. Environmental impact of plasma application to textiles. J Phys Conf Ser 2007;71:012017. link1

[63] Jelil RA. A review of low-temperature plasma treatment of textile materials. J Mater Sci 2015;50(18):5913–43. link1

[64] Olde Riekerink MB, Terlingen JGA, Engbers GHM, Feijen J. Selective etching of semicrystalline polymers: CF4 gas plasma treatment of poly (ethylene). Langmuir 1999;15(14):4847–56. link1

[65] Hwang YJ. Characterization of atmospheric pressure plasma interactions with textile/polymer substrates [dissertation]. Raleigh: North Carolina State University; 2003. link1

[66] Kan C, Yuen CW. Plasma technology in wool. Text Prog 2007;39(3):121–87. link1

[67] Dave H, Ledwani L, Nema SK. Nonthermal plasma: a promising green technology to improve environmental performance of textile industries. In: Shahid-ul-Islam, Butola BS, editors. The impact and prospects of green chemistry for textile technology. Amsterdam: Elsevier; 2019. p. 199–249.

[68] Naebe M, Denning R, Huson M, Cookson PG, Wang X. Ageing effect of plasmatreated wool. J Text Inst 2011;102(12):1086–93. link1

[69] Naebe M, Cookson PG, Denning R, Wang X. Use of low-level plasma for enhancing the shrink resistance of wool fabric treated with a silicone polymer. J Text Inst 2011;102(11):948–56. link1

[70] Naebe M, Cookson PG, Rippon J, Brady RP, Wang X, Brack N, et al. Effects of plasma treatment of wool on the uptake of sulfonated dyes with different hydrophobic properties. Text Res J 2010;80(4):312–24. link1

[71] McCoustra MRS, Mather RR. Plasma modification of textiles: understanding the mechanisms involved. Text Prog 2018;50(4):185–229. link1

[72] Ratnapandian S, Wang L, Fergusson SM, Naebe M. Effect of atmospheric plasma treatment on pad-dyeing of natural dyes on wool. J Fiber Bioeng Inf 2011;4(3):267–76. link1

[73] Herbert T. Atmospheric-pressure cold plasma processing technology. In: Shishoo R, editor. Plasma technologies for textiles. Cambridge: Woodhead Publishing; 2007. p. 79–128. link1

[74] Vaideki K. Plasma technology for antimicrobial textiles. In: Sun G, editor. Antimicrobial textiles. Cambridge: Woodhead Publishing; 2016. p. 73–86. link1

[75] Kan CW, Yuen CWM. Textile modification with plasma treatment. Res J Text Apparel 2006;10(1):49–64. link1

[76] Pransilp P, Pruettiphap M, Bhanthumnavin W, Paosawatyanyong B, Kiatkamjornwong S. Surface modification of cotton fabrics by gas plasmas for color strength and adhesion by inkjet ink printing. Appl Surf Sci 2016;364:208–20. link1

[77] Pandiyaraj KN, Selvarajan V. Non-thermal plasma treatment for hydrophilicity improvement of grey cotton fabrics. J Mater Process Technol 2008;199(1–3):130–9. link1

[78] Peng S, Gao Z, Sun J, Yao L, Qiu Y. Influence of argon/oxygen atmospheric dielectric barrier discharge treatment on desizing and scouring of poly (vinyl alcohol) on cotton fabrics. Appl Surf Sci 2009;255(23):9458–62. link1

[79] Shahid-ul-Islam, Shahid M, Mohammad F. Green chemistry approaches to develop antimicrobial textiles based on sustainable biopolymers—a review. Ind Eng Chem Res 2013;52(15):5245–60. link1

[80] Zhou CE, Kan CW, Matinlinna J, Tsoi J. Regenerable antibacterial cotton fabric by plasma treatment with dimethylhydantoin: antibacterial activity against S. aureus. Coatings 2017;7(1):11. link1

[81] Zhou CE, Kan CW. Review of antibacterial finishing processes with plasma for cotton. Res J Text Apparel 2013;17(4):12–24. link1

[82] Arik B, Demir A, Özdog˘an E, Gülümser T. Effects of novel antibacterial chemicals on low temperature plasma functionalized cotton surface. Tekstil ve Konfeksiyon 2011;21(4):356–63. link1

[83] Fras ZemljicL, Persin Z, Stenius P. Improvement of chitosan adsorption onto cellulosic fabrics by plasma treatment. Biomacromolecules 2009;10 (5):1181–7. link1

[84] Haji A, Ashraf S, Nasiriboroumand M, Lievens C. Environmentally friendly surface treatment of wool fiber with plasma and chitosan for improved coloration with cochineal and safflower natural dyes. Fibers Polym 2020;21 (4):743–50. link1

[85] Haji A. Plasma activation and chitosan attachment on cotton and wool for improvement of dyeability and fastness properties. Pigm Resin Technol 2020;49(6):483–9.

[86] Haji A. Improved natural dyeing of cotton by plasma treatment and chitosan coating. Optimization by response surface methodology. Cellul Chem Technol 2017;51(9–10):975–82.

[87] Haji A, Qavamnia SS, Bizhaem FK. Salt free neutral dyeing of cotton with anionic dyes using plasma and chitosan treatments. Ind Text 2016;67 (2):109–33. link1

[88] Haji A, Mehrizi MK, Sharifzadeh J. Dyeing of wool with aqueous extract of cotton pods improved by plasma treatment and chitosan: optimization using response surface methodology. Fibers Polym 2016;17(9):1480–8. link1

[89] Haji A, Khajeh Mehrizi M, Hashemizad S. Plasma and chitosan treatments for improvement of natural dyeing and antibacterial properties of cotton and wool. Vlakna Text 2016;23(3):86–90. link1

[90] Sophonvachiraporn P, Rujiravanit R, Sreethawong T, Tokura S, Chavadej S. Surface characterization and antimicrobial activity of chitosan-deposited DBD plasma-modified woven PET surface. Plasma Chem Plasma Process 2011;31(1):233–49. link1

[91] Chang YB, Tu PC, Wu MW, Hsueh TH, Hsu SH. A study on chitosan modification of polyester fabrics by atmospheric pressure plasma and its antibacterial effects. Fibers Polym 2008;9(3):307–11. link1

[92] Tseng HJ, Hsu SH, Wu MW, Hsueh TH, Tu PC. Nylon textiles grafted with chitosan by open air plasma and their antimicrobial effect. Fibers Polym 2009;10(1):53–9. link1

[93] Goy RC, de Britto D, Assis OBG. A review of the antimicrobial activity of chitosan. Polímeros 2009;19(3):241–7. link1

[94] Goy RC, Morais STB, Assis OBG. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Rev Bras Farmacogn 2016;26(1):122–7. link1

[95] Yim JH, Fleischman MS, Rodriguez-Santiago V, Piehler LT, Williams AA, Leadore JL, et al. Development of antimicrobial coatings by atmospheric pressure plasma using a guanidine-based precursor. ACS Appl Mater Interfaces 2013;5(22):11836–43. link1

[96] Song X, Cvelbar U, Strazar P, Vossebein L, Zille A. Chemical, thermomechanical and antimicrobial properties of DBD plasma treated disinfectant-impregnated wipes during storage. Polymers 2019;11 (11):1769. link1

[97] Song X, Cvelbar U, Strazar P, Vossebein L, Zille A. Antimicrobial efficiency and surface interactions of quaternary ammonium compound absorbed on dielectric barrier discharge (DBD) plasma treated fiber-based wiping materials. ACS Appl Mater Interfaces 2020;12(1):298–311. link1

[98] Labay C, Canal JM, Modic M, Cvelbar U, Quiles M, Armengol M, et al. Antibiotic-loaded polypropylene surgical meshes with suitable biological behaviour by plasma functionalization and polymerization. Biomaterials 2015;71:132–44. link1

[99] Ivanova TV, Krumpolec R, Homola T, Musin E, Baier G, Landfester K, et al. Ambient air plasma pre-treatment of non-woven fabrics for deposition of antibacterial poly(L-lactide) nanoparticles. Plasma Process Polym 2017;14 (10):1600231. link1

[100] Ribeiro AI, Senturk D, Silva KK, Modic M, Cvelbar U, Dinescu G, et al. Antimicrobial efficacy of low concentration PVP–silver nanoparticles deposited on DBD plasma-treated polyamide 6,6 fabric. Coatings 2019;9 (9):581. link1

[101] Zille A, Fernandes MM, Francesko A, Tzanov T, Fernandes M, Oliveira FR, et al. Size and aging effects on antimicrobial efficiency of silver nanoparticles coated on polyamide fabrics activated by atmospheric DBD plasma. ACS Appl Mater Interfaces 2015;7(25):13731–44. link1

[102] Ilic´ V, Saponjic´ Z, Vodnik V, Lazovic´ S, Dimitrijevic´ S, Jovancic´ P, et al. Bactericidal efficiency of silver nanoparticles deposited onto radio frequency plasma pretreated polyester fabrics. Ind Eng Chem Res 2010;49 (16):7287–93. link1

[103] Nourbakhsh S. Antimicrobial performance of plasma corona modified cotton treated with silver nitrate. Russ J Appl Chem 2018;91 (8):1338–44. link1

[104] Nourbakhsh S, Sepehrnia H, Akbari E. Novel corona discharge treatment of cotton fabric with Cu and ZnO nanoparticles. J Text Inst 2020;111 (9):1269–76. link1

[105] Peng L, Guo R, Lan J, Jiang S, Wang X, Li C, et al. Synthesis of silver nanoparticles on bamboo pulp fabric after plasma pretreatment. J Mater Sci Mater Electron 2016;27(6):5925–33. link1

[106] Gorjanc M, Bukošek V, Gorenšek M, Mozeticˇ M. CF4 plasma and silver functionalized cotton. Text Res J 2010;80(20):2204–13. link1

[107] Anjum S, Gupta A, Sharma D, Kumari S, Sahariah P, Bora J, et al. Antimicrobial nature and healing behavior of plasma functionalized polyester sutures. J Bioact Compat Polym Biomed Appl 2017;32(3):263–79. link1

[108] Radic´ N, Obradovic´ BM, Kostic´ M, Dojcˇinovic´ B, Hudcová M, Kuraica MM, et al. Deposition of gold nanoparticles on polypropylene nonwoven pretreated by dielectric barrier discharge and diffuse coplanar surface barrier discharge. Plasma Chem Plasma Process 2013;33(1):201–18. link1

[109] Kramar A, Prysiazhnyi V, Dojcˇinovic´ B, Mihajlovski K, Obradovic´ BM, Kuraica MM, et al. Antimicrobial viscose fabric prepared by treatment in DBD and subsequent deposition of silver and copper ions—investigation of plasma aging effect. Surf Coat Technol 2013;234:92–9. link1

[110] Kostic´ M, Radic´ N, Obradovic´ BM, Dimitrijevic´ S, Kuraica MM, Skundric´ P. Silver-loaded cotton/polyester fabric modified by dielectric barrier discharge treatment. Plasma Process Polym 2009;6(1):58–67. link1

[111] Deng X, Yu Nikiforov A, Coenye T, Cools P, Aziz G, Morent R, et al. Antimicrobial nano-silver non-woven polyethylene terephthalate fabric via an atmospheric pressure plasma deposition process. Sci Rep 2015;5 (1):10138. link1

[112] Deng X, Nikiforov A, Vujosevic D, Vuksanovic V, Mugoša B, Cvelbar U, et al. Antibacterial activity of nano-silver non-woven fabric prepared by atmospheric pressure plasma deposition. Mater Lett 2015;149:95–9. link1

[113] Ocampo IND, Malapit GM, Baculi RQ. Ar/O2 atmospheric pressure plasma jet treatment of pure cotton fabric for antibacterial application. Plasma Fusion Res 2018;13:3406116. link1

[114] Nanjappan K, Aarumugam V, Kesavan V. Plasma process for coated fabric materials with Zinc to prepare antibacterial modal fabric. Mater Technol 2018;33(10):635–41. link1

[115] Jazbec K, Šala M, Mozeticˇ M, Vesel A, Gorjanc M. Functionalization of cellulose fibres with oxygen plasma and ZnO nanoparticles for achieving UV protective properties. J Nanomater 2015;2015:1–9. link1

[116] Zhou CE, Kan C, Yuen CM, Lo KC, Ho C, Lau KR. Regenerable antimicrobial finishing of cotton with nitrogen plasma treatment. BioResources 2016;11 (1):1554–70. link1

[117] Zhou CE, Kan CW, Yuen CW, Matinlinna JP, Tsoi JH, Zhang Q. Plasma treatment applied in the pad–dry–cure process for making rechargeable antimicrobial cotton fabric that inhibits S. Aureus. Text Res J 2016;86 (20):2202–15. link1

[118] Zhou CE, Kan CW. Optimizing rechargeable antimicrobial performance of cotton fabric coated with 5,5-dimethylhydantoin (DMH). Cellulose 2015;22 (1):879–86. link1

[119] Kan CW. Using plasma treatment for enhancing the coating for rechargeable antimicrobial finishing of cotton fabric. Int J Chem Eng Appl 2015;6 (6):432–5. link1

[120] Kongarasi K, Rajendran R, Radhai R, Karthik Sundaram S, Rajalakshmi V, Manikandan A, et al. Antimicrobial property of plasma treated bamboo fabric imparted with combinatorial herbal extract. Int J Pure Appl Biosci 2016;4 (6):76–87. link1

[121] Vajpayee M, Singh M, Ledwani L, Prakash R, Nema SK. Investigation of antimicrobial activity of DBD air plasma-treated banana fabric coated with natural leaf extracts. ACS Omega 2020;5(30):19034–49. link1

[122] Shahidi S, Aslan N, Ghoranneviss M, Korachi M. Effect of thymol on the antibacterial efficiency of plasma-treated cotton fabric. Cellulose 2014;21 (3):1933–43. link1

[123] Nithya E, Radhai R, Rajendran R, Jayakumar S, Vaideki K. Enhancement of the antimicrobial property of cotton fabric using plasma and enzyme pretreatments. Carbohydr Polym 2012;88(3):986–91. link1

[124] Nithya E, Jayakumar S, Vaideki K, Rajendran R. The influence of DC air plasma and cellulase enzyme on the antimicrobial activity of azadirachtin (neem leaf extract) treated cotton fabric. In: Mendez-Vilas A, editor. Science and technology against microbial pathogens. Singapore: World Scientific; 2011. p. 196–201. link1

[125] Vaideki K, Jayakumar S, Rajendran R, Thilagavathi G. Investigation on the effect of RF air plasma and neem leaf extract treatment on the surface modification and antimicrobial activity of cotton fabric. Appl Surf Sci 2008;254(8):2472–8. link1

[126] Vaideki K, Jayakumar S, Rajendran R. Investigation on the enhancement of antimicrobial activity of neem leaf extract treated cotton fabric using air and oxygen DC plasma. Plasma Chem Plasma Process 2009;29(6):515–34. link1

[127] Vaideki K, Jayakumar S, Thilagavathi G, Rajendran R. A study on the antimicrobial efficacy of RF oxygen plasma and neem extract treated cotton fabrics. Appl Surf Sci 2007;253(17):7323–9. link1

[128] Anitha S, Vaideki K, Jayakumar S, Rajendran R. Enhancement of antimicrobial efficacy of neem oil vapour treated cotton fabric by plasma pretreatment. Mater Technol 2015;30(6):368–77. link1

[129] Chen C, Chang WY. Antimicrobial activity of cotton fabric pretreated by microwave plasma and dyed with onion skin and onion pulp extractions. Indian J Fibre Text Res 2007;32(1):122–5. link1

[130] Haji A, Khajeh Mehrizi M, Akbarpour R. Optimization of b-cyclodextrin grafting on wool fibers improved by plasma treatment and assessment of antibacterial activity of berberine finished fabric. J Incl Phenom Macrocycl Chem 2015;81(1–2):121–33. link1

[131] Haji A, Shoushtari AM. Natural antibacterial finishing of wool fiber using plasma technology. Ind Text 2011;62(5):244–7. link1

[132] Shahidi S, Ghoranneviss M. Plasma sputtering for fabrication of antibacterial and ultraviolet protective fabric. Cloth Text Res J 2016;34(1):37–47. link1

[133] Yuan X, Yin W, Ke H, Wei Q, Huang Z, Chen D. Properties and application of multi-functional and structurally colored textile prepared by magnetron sputtering. J Ind Text 2022;51(8):1528083719900671.

[134] Liu S, Li J, Zhang S, Zhang X, Ma J, Wang Na, et al. Template-assisted magnetron sputtering of cotton nonwovens for wound healing application. ACS Appl Bio Mater 2020;3(2):848–58. link1

[135] Naeem M, Felipe MBMC, de Medeiros SRB, Costa THC, Libório MS, Alves Jr C, et al. Novel antibacterial silver coating on PET fabric assisted with hollowcathode glow discharge. Polym Adv Technol 2020;31(11):2896–905. link1

[136] Rani KV, Sarma B, Sarma A. Plasma sputtering process of copper on polyester/ silk blended fabrics for preparation of multifunctional properties. Vacuum 2017;146:206–15. link1

[137] Khamseh S, Tekieh Fatemi SM, Koozegar kaleji B, Sadeghi-Kiakhani M. Investigations on sputter-coated cotton fabric with regard to their microstructure, antibacterial, hydrophobic properties and thermal stability. J Text Inst 2017;108(12):2184–90. link1

[138] Irfan M, Perero S, Miola M, Maina G, Ferri A, Ferraris M, et al. Antimicrobial functionalization of cotton fabric with silver nanoclusters/silica composite coating via RF co-sputtering technique. Cellulose 2017;24(5):2331–45. link1

[139] Dong P, Nie X, Jin Z, Huang Z, Wang X, Zhang X. Dual dielectric barrier discharge plasma treatments for synthesis of Ag–TiO2 functionalized polypropylene fabrics. Ind Eng Chem Res 2019;58(19):7734–41. link1

[140] Fan Z, Di L, Zhang X, Wang H. A surface dielectric barrier discharge plasma for preparing cotton-fabric-supported silver nanoparticles. Nanomaterials (Basel) 2019;9(7):961–72. link1

[141] Li Z, Meng J, Wang W, Wang Z, Li M, Chen T, et al. The room temperature electron reduction for the preparation of silver nanoparticles on cotton with high antimicrobial activity. Carbohydr Polym 2017;161:270–6. link1

[142] Kratochvíl J, Kuzminova A, Kylián O. State-of-the-art, and perspectives of, silver/plasma polymer antibacterial nanocomposites. Antibiotics 2018;7 (3):78. link1

[143] Nikiforov A, Deng X, Xiong Q, Cvelbar U, DeGeyter N, Morent R, et al. Nonthermal plasma technology for the development of antimicrobial surfaces: a review. J Phys D Appl Phys 2016;49(20):204002. link1

[144] Tan XQ, Liu JY, Niu JR, Liu JY, Tian JY. Recent progress in magnetron sputtering technology used on fabrics. Materials 2018;11(10):1953. link1

[145] Surdu L, Visileanu E, Ardeleanu A, Mitran C, Ra˘dulescu IR, Stancu C, et al. Research regarding the cover factor of magnetron sputtering plasma coated fabrics. Ind Text 2019;70(2):154–9.

[146] Peng L, Guo R, Lan J, Jiang S, Zhang Z, Xu J. Preparation and characterization of copper-coated polyester fabric pretreated with laser by magnetron sputtering. J Ind Text 2018;48(2):482–93. link1

[147] Aboutorabi SN, Nasiriboroumand M, Mohammadi P, Sheibani H, Barani H. Biosynthesis of silver nanoparticles using safflower flower: structural characterization, and its antibacterial activity on applied wool fabric. J Inorg Organomet Polym Mater 2018;28(6):2525–32. link1

[148] Boroumand MN, Montazer M, Simon F, Liesiene J, Šaponjic Z, Dutschk V. Novel method for synthesis of silver nanoparticles and their application on wool. Appl Surf Sci 2015;346:477–83. link1

[149] Di L, Zhang J, Zhang X. A review on the recent progress, challenges, and perspectives of atmospheric-pressure cold plasma for preparation of supported metal catalysts. Plasma Process Polym 2018;15(5):1700234. link1

[150] Dong P, Yang F, Cheng X, Huang Z, Nie X, Xiao Y, et al. Plasmon enhanced photocatalytic and antimicrobial activities of Ag–TiO2 nanocomposites under visible light irradiation prepared by DBD cold plasma treatment. Mater Sci Eng C Mater Biol Appl 2019;96:197–204. link1

[151] Buyle G. Nanoscale finishing of textiles via plasma treatment. Mater Technol 2009;24(1):46–51. link1

[152] Zille A, Oliveira FR, Souto AP. Plasma treatment in textile industry. Plasma Process Polym 2015;12(2):98–131. link1

[153] Parthasarathi V, Thilagavathi G. Development of plasma enhanced antiviral surgical gown for healthcare workers. Fashion Text 2015;2(1):4. link1

Related Research