Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 11, Issue 4 doi: 10.1016/j.eng.2021.05.011

Prospects of Huygens’ Metasurfaces for Antenna Applications

Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada

Received: 2020-12-28 Revised: 2021-05-01 Accepted: 2021-05-06 Available online: 2021-06-30

Next Previous

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

References

[ 1 ] Collin RE. Field theory of guided waves. 2nd ed. Toronto: Wiley–IEEE Press; 1990. link1

[ 2 ] Shelby RA, Smith DR, Schultz S. Experimental verification of a negative index of refraction. Science 2001;292(5514):77–9. link1

[ 3 ] Eleftheriades GV, Iyer AK, Kremer PC. Planar negative refractive index media using periodically L–C loaded transmission lines. IEEE Trans Microw Theory Tech 2002;50(12):2702–12. link1

[ 4 ] Caloz C, Itoh T. Electromagnetic metamaterials: transmission line theory and microwave applications. Hoboken: John Wiley & Sons, Inc.; 2006. link1

[ 5 ] Yu N, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 2011;334(6054):333–7. link1

[ 6 ] Pfeiffer C, Grbic A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys Rev Lett 2013;110(19):197401. link1

[ 7 ] Selvanayagam M, Eleftheriades GV. Discontinuous electromagnetic fields using orthogonal electric and magnetic currents for wavefront manipulation. Opt Express 2013;21(12):14409–29. link1

[ 8 ] Monticone F, Estakhri NM, Alù A. Full control of nanoscale optical transmission with a composite metascreen. Phys Rev Lett 2013;110(20):203903. link1

[ 9 ] Kuester EF, Mohamed MA, Piket-May M, Holloway CL. Averaged transition conditions for electromagnetic fields at a metafilm. IEEE Trans Antennas Propag 2003;51(10):2641–51. link1

[10] Selvanayagam M, Eleftheriades GV. An active electromagnetic cloak using the equivalence principle. IEEE Antennas Wirel Propag Lett 2012;11:1226–9. link1

[11] Chen M, Abdo-Sánchez E, Epstein A, Eleftheriades GV. Theory, design, and experimental verification of a reflectionless bianisotropic Huygens’ metasurface for wide-angle refraction. Phys Rev B 2018;97(12). 125433.1–14. link1

[12] Epstein A, Wong JPS, Eleftheriades GV. Cavity-excited Huygens’ metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures. Nat Commun 2016;7:10360. link1

[13] Raeker BO, Grbic A. Compound metaoptics for amplitude and phase control of wave fronts. Phys Rev Lett 2019;122(11):113901. link1

[14] Dorrah AH, Eleftheriades GV. Bianisotropic Huygens’ metasurface pairs for nonlocal power-conserving wave transformations. IEEE Antennas Wirel Propag Lett 2018;17(10):1788–92. link1

[15] Epstein A, Eleftheriades GV. Synthesis of passive lossless metasurfaces using auxiliary fields for reflectionless beam splitting and perfect reflection. Phys Rev Lett 2016;117(25):256103. link1

[16] Ataloglou VG, Eleftheriades GV. Surface-waves optimization for beamforming with a single omega-bianisotropic Huygens’ metasurface. In: Proceedings of 2020 IEEE International Symposium on Antennas Propagation and North American Radio Science Meeting; 2020 Jul 5–10; Montreal, QC, Canada; 2020. p. 905–6.

[17] Chen M, Eleftheriades GV. Omega-bianisotropic wire-loop Huygens’ metasurface for reflectionless wide-angle refraction. IEEE Trans Antennas Propag 2020;68(3):1477–90. link1

[18] Abdo-Sánchez E, Chen M, Epstein A, Eleftheriades GV. A leaky-wave antenna with controlled radiation using a bianisotropic Huygens’ metasurface. IEEE Trans Antennas Propag 2019;67(1):108–20. link1

[19] Chen K, Feng Y, Monticone F, Zhao J, Zhu B, Jiang T, et al. A reconfigurable active Huygens’ metalens. Adv Mater 2017;29(17):1606422. link1

[20] Clemente A, Dussopt L, Sauleau R, Potier P, Pouliguen P. 1-Bit reconfigurable unit cell based on PIN diodes for transmit-array applications in X-band. IEEE Trans Antennas Propag 2012;60(5):2260–9. link1

[21] Cui TJ, Qi MQ, Wan X, Zhao J, Cheng Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light 2014;3(10):e218.

[22] Li L, Li Y, Wu Z, Huo F, Zhang Y, Zhao C. Novel polarization-reconfigurable converter based on multilayer frequency-selective surfaces. Proc IEEE 2015;103(7):1057–70. link1

[23] Wu Z, Ra’di Y, Grbic A. Tunable metasurfaces: a polarization rotator design. Phys Rev X 2019;9(1):011036. link1

[24] Kim M, Eleftheriades GV. Huygens’-metasurface-assisted reconfigurable leakywave antennas with dynamically-controlled radiation patterns. In: Proceedings of the 2020 Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials); 2020 Sep 27–Oct 3; New York City, NY, USA; 2020.

[25] Wong AMH, Eleftheriades GV. Active Huygens’ metasurfaces for RF waveform synthesis in a cavity. In: Proceedings of the 2016 18th Mediterranean Electrotechnical Conference (MELECON); 2016 Apr 18–20; Lemesos, Cyprus; 2016.

[26] Wong AMH, Eleftheriades GV. Active Huygens’ box: arbitrary electromagnetic wave generation with an electronically controlled metasurface. IEEE Trans Antennas Propag 2021;69(3):1455–68. link1

[27] Dorrah AH, Eleftheriades GV. Peripherally excited phased array architecture for beam steering with reduced number of active elements. IEEE Trans Antennas Propag 2020;68(3):1249–60. link1

[28] Oyesina KA, Wong AMH. Metasurface-enabled cavity antenna: beam steering with dramatically reduced fed elements. IEEE Antennas Wirel Propag Lett 2020;19(4):616–20. link1

[29] Dorrah AH, Chen M, Eleftheriades GV. Bianisotropic Huygens’ metasurface for wideband impedance matching between two dielectric media. IEEE Trans Antennas Propag 2018;66(9):4729–42. link1

[30] Taravati S, Eleftheriades GV. Full-duplex nonreciprocal beam steering by time-modulated phase-gradient metasurfaces. Phys Rev Appl 2020;14 (1):014027. link1

Related Research