Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 14, Issue 7 doi: 10.1016/j.eng.2021.06.030

Spinning from Nature: Engineered Preparation and Application of High-Performance Bio-Based Fibers

a State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
b Institute of Applied Bioresources, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
c State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
d Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
e State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

Received: 2020-05-30 Revised: 2021-04-02 Accepted: 2021-06-08 Available online: 2022-05-28

Next Previous

Abstract

Many natural fibers are lightweight and display remarkable strength and toughness. These properties originate from the fibers' hierarchical structures, assembled from the molecular to macroscopic scale. The natural spinning systems that produce such fibers are highly energy efficient, inspiring researchers to mimic these processes to realize robust artificial spinning. Significant developments have been achieved in recent years toward the preparation of high-performance bio-based fibers. Beyond excellent mechanical properties, bio-based fibers can be functionalized with a series of new features, thus expanding their sophisticated applications in smart textiles, electronic sensors, and biomedical engineering. Here, recent progress in the construction of bio-based fibers is outlined. Various bioinspired spinning methods, strengthening strategies for mechanically strong fibers, and the diverse applications of these fibers are discussed. Moreover, challenges in reproducing the mechanical performance of natural systems and understanding their dynamic spinning process are presented. Finally, a perspective on the development of biological fibers is given.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

References

[ 1 ] Sun J, Su J, Ma C, Göstl R, Herrmann A, Liu K, et al. Fabrication and mechanical properties of engineered protein-based adhesives and fibers. Adv Mater 2020;32(6):1906360. link1

[ 2 ] Shang L, Yu Y, Liu Y, Chen Z, Kong T, Zhao Y. Spinning and applications of bioinspired fiber systems. ACS Nano 2019;13(3):2749–72. link1

[ 3 ] Liu Y, Ren J, Ling S. Bioinspired and biomimetic silk spinning. Compo Commun 2019;13:85–96. link1

[ 4 ] Park JH, Rutledge GC. 50th anniversary perspective: advanced polymer fibers: high performance and ultrafine. Macromolecules 2017;50(15):5627–42. link1

[ 5 ] Yan L, Kasal B, Huang L. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos Part B Eng 2016;92:94–132. link1

[ 6 ] Ramesh M, Palanikumar K, Reddy KH. Plant fibre based bio-composites: sustainable and renewable green materials. Renew Sustain Energy Rev 2017;79:558–84. link1

[ 7 ] Li G, Li Y, Chen G, He J, Han Y, Wang X, et al. Silk-based biomaterials in biomedical textiles and fiber-based implants. Adv Healthc Mater 2015;4 (8):1134–51. link1

[ 8 ] Chang H, Luo J, Gulgunje PV, Kumar S. Structural and functional fibers. Annu Rev Mater Res 2017;47:331–59. link1

[ 9 ] Smits J. Fiber-reinforced polymer bridge design in the Netherlands: architectural challenges toward innovative, sustainable, and durable bridges. Engineering 2016;2(4):518–27. link1

[10] Ling S, Kaplan DL, Buehler MJ. Nanofibrils in nature and materials engineering. Nat Rev Mater 2018;3:18016. link1

[11] Ling S, Chen W, Fan Y, Zheng K, Jin K, Yu H, et al. Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog Polym Sci 2018;85:1–56. link1

[12] Bourmaud A, Beaugrand J, Shah DU, Placet V, Baley C. Towards the design of high-performance plant fibre composites. Prog Mater Sci 2018;97:347–408. link1

[13] Mohanty AK, Vivekanandhan S, Pin JM, Misra M. Composites from renewable and sustainable resources: challenges and innovations. Science 2018;362 (6414):536–42. link1

[14] Omenetto FG, Kaplan DL. New opportunities for an ancient material. Science 2010;329(5991):528–31. link1

[15] Gosline JM, Guerette PA, Ortlepp CS, Savage KN. The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol 1999;202(23):3295–303. link1

[16] Yarger JL, Cherry BR, van der Vaart A. Uncovering the structure–function relationship in spider silk. Nat Rev Mater 2018;3:18008. link1

[17] Yang K, Guan J, Numata K, Wu C, Wu S, Shao Z, et al. Integrating tough Antheraea pernyi silk and strong carbon fibres for impact-critical structural composites. Nat Commun 2019;10:3786. link1

[18] Fu C, Porter D, Chen X, Vollrath F, Shao Z. Understanding the mechanical properties of Antheraea Pernyi silk—from primary structure to condensed structure of the protein. Adv Funct Mater 2011;21(4):729–37. link1

[19] Wambua P, Ivens J, Verpoest I. Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 2003;63(9):1259–64. link1

[20] Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO. Bioinspired structural materials. Nat Mater 2015;14:23–36. link1

[21] Kontturi E, Laaksonen P, Linder MB, Nonappa, Gröschel AH, Rojas OJ, et al. Advanced materials through assembly of nanocelluloses. Adv Mater 2018;30 (24):1703779. link1

[22] Zheng Y, Bai H, Huang Z, Tian X, Nie FQ, Zhao Y, et al. Directional water collection on wetted spider silk. Nature 2010;463(7281):640–3. link1

[23] Tao P, Shang W, Song C, Shen Q, Zhang F, Luo Z, et al. Bioinspired engineering of thermal materials. Adv Mater 2015;27(3):428–63. link1

[24] Eder M, Amini S, Fratzl P. Biological composites—complex structures for functional diversity. Science 2018;362(6414):543–7. link1

[25] Sachsenmeier P. Industry 5.0—the relevance and implications of bionics and synthetic biology. Engineering 2016;2(2):225–9. link1

[26] Vollrath F, Knight DP. Liquid crystalline spinning of spider silk. Nature 2001;410:541–8. link1

[27] Shao Z, Vollrath F. Surprising strength of silkworm silk. Nature 2002;418:741. link1

[28] Koeppel A, Holland C. Progress and trends in artificial silk spinning: a systematic review. ACS Biomater Sci Eng 2017;3:226–37. link1

[29] Cheng J, Lee SH. Development of new smart materials and spinning systems inspired by natural silks and their applications. Front Mater 2016;2:74. link1

[30] Guo C, Li C, Mu X, Kaplan DL. Engineering silk materials: from natural spinning to artificial processing. Appl Phys Rev 2020;7:011313. link1

[31] Jin HJ, Kaplan DL. Mechanism of silk processing in insects and spiders. Nature 2003;424:1057–61. link1

[32] Heim M, Keerl D, Scheibel T. Spider silk: from soluble protein to extraordinary fiber. Angew Chem Int Ed Engl 2009;48(20):3584–96. link1

[33] Laity PR, Baldwin E, Holland C. Changes in silk feedstock rheology during cocoon construction: the role of calcium and potassium ions. Macromol Biosci 2019;19(3):1800188. link1

[34] Sparkes J, Holland C. Analysis of the pressure requirements for silk spinning reveals a pultrusion dominated process. Nat Commun 2017;8:594. link1

[35] Xia K, Ouyang Q, Chen Y, Wang X, Qian X, Wang L. Preparation and characterization of lignosulfonate–acrylonitrile copolymer as a novel carbon fiber precursor. ACS Sustain Chem Eng 2016;4(1):159–68. link1

[36] Ouyang Q, Xia K, Liu D, Jiang X, Ma H, Chen Y. Fabrication of partially biobased carbon fibers from novel lignosulfonate–acrylonitrile copolymers. J Mater Sci 2017;52:7439–51. link1

[37] Yao J, Masuda H, Zhao C, Asakura T. Artificial spinning and characterization of silk fiber from Bombyx mori silk fibroin in hexafluoroacetone hydrate. Macromolecules 2002;35(1):6–9. link1

[38] Lee KH, Baek DH, Ki CS, Park YH. Preparation and characterization of wet spun silk fibroin/poly(vinyl alcohol) blend filaments. Int J Biol Macromol 2007;41 (2):168–72. link1

[39] Ki CS, Kim JW, Oh HJ, Lee KH, Park YH. The effect of residual silk sericin on the structure and mechanical property of regenerated silk filament. Int J Biol Macromol 2007;41(3):346–53. link1

[40] Xu L, Weatherbee-Martin N, Liu XQ, Rainey JK. Recombinant silk fiber properties correlate to prefibrillar self-assembly. Small 2019;15 (12):1805294. link1

[41] Zhou G, Shao Z, Knight DP, Yan J, Chen X. Silk fibers extruded artificially from aqueous solutions of regenerated Bombyx mori silk fibroin are tougher than their natural counterparts. Adv Mater 2009;21(3):366–70. link1

[42] Fang G, Huang Y, Tang Y, Qi Z, Yao J, Shao Z, et al. Insights into silk formation process: correlation of mechanical properties and structural evolution during artificial spinning of silk fibers. ACS Biomater Sci Eng 2016;2 (11):1992–2000. link1

[43] Wei W, Zhang Y, Zhao Y, Luo J, Shao H, Hu X. Bio-inspired capillary dry spinning of regenerated silk fibroin aqueous solution. Mater Sci Eng C 2011;31(7):1602–8. link1

[44] Yue X, Zhang F, Wu H, Ming J, Fan Z, Zuo B. A novel route to prepare dry-spun silk fibers from CaCl2–formic acid solution. Mater Lett 2014;128:175–8. link1

[45] Sun M, Zhang Y, Zhao Y, Shao H, Hu X. The structure–property relationships of artificial silk fabricated by dry-spinning process. J Mater Chem 2012;22 (35):18372–9. link1

[46] Ling S, Qin Z, Li C, Huang W, Kaplan DL, Buehler MJ. Polymorphic regenerated silk fibers assembled through bioinspired spinning. Nat Commun 2017;8:1387. link1

[47] Ma C, Su J, Li B, Herrmann A, Zhang H, Liu K. Solvent-free plasticity and programmable mechanical behaviors of engineered proteins. Adv Mater 2020;32(10):1907697. link1

[48] Whitesides GM. The origins and the future of microfluidics. Nature 2006;442:368–73. link1

[49] Cheng Y, Zheng F, Lu J, Shang L, Xie Z, Zhao Y, et al. Bioinspired multicompartmental microfibers from microfluidics. Adv Mater 2014;26 (30):5184–90. link1

[50] Jun Y, Kang E, Chae S, Lee SH. Microfluidic spinning of micro- and nano-scale fibers for tissue engineering. Lab Chip 2014;14(13):2145–60. link1

[51] Yu Y, Fu F, Shang L, Cheng Y, Gu Z, Zhao Y. Bioinspired helical microfibers from microfluidics. Adv Mater 2017;29(18):1605765. link1

[52] Yu Y, Shang L, Guo J, Wang J, Zhao Y. Design of capillary microfluidics for spinning cell-laden microfibers. Nat Protoc 2018;13(11):2557–79. link1

[53] Du XY, Li Q, Wu G, Chen S. Multifunctional micro/nanoscale fibers based on microfluidic spinning technology. Adv Mater 2019;31(52):1903733. link1

[54] Håkansson KMO, Fall AB, Lundell F, Yu S, Krywka C, Roth SV, et al. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat Commun 2014;5(1):4018. link1

[55] Mittal N, Jansson R, Widhe M, Benselfelt T, Håkansson KMO, Lundell F, et al. Ultrastrong and bioactive nanostructured bio-based composites. ACS Nano 2017;11(5):5148–59. link1

[56] Mittal N, Ansari F, Gowda VK, Brouzet C, Chen P, Larsson PT, et al. Multiscale control of nanocellulose assembly: transferring remarkable nanoscale fibril mechanics to macroscale fibers. ACS Nano 2018;12(7):6378–88. link1

[57] Zou J, Kim F. Self-assembly of two-dimensional nanosheets induced by interfacial polyionic complexation. ACS Nano 2012;6(12):10606–13. link1

[58] Grande R, Trovatti E, Carvalho AJF, Gandini A. Continuous microfiber drawing by interfacial charge complexation between anionic cellulose nanofibers and cationic chitosan. J Mater Chem A 2017;5(25):13098–103. link1

[59] Do M, Im BG, Park JP, Jang JH, Lee H. Functional polysaccharide sutures prepared by wet fusion of interfacial polyelectrolyte complexation fibers. Adv Funct Mater 2017;27(42):1702017. link1

[60] Barthelat F, Yin Z, Buehler MJ. Structure and mechanics of interfaces in biological materials. Nat Rev Mater 2016;1(4):16007. link1

[61] Fang G, Zheng Z, Yao J, Chen M, Tang Y, Zhong J, et al. Tough protein–carbon nanotube hybrid fibers comparable to natural spider silks. J Mater Chem B 2015;3(19):3940–7. link1

[62] Kamada A, Levin A, Toprakcioglu Z, Shen Yi, Lutz-Bueno V, Baumann KN, et al. Modulating the mechanical performance of macroscale fibers through shearinduced alignment and assembly of protein nanofibrils. Small 2020;16 (9):1904190. link1

[63] Zhang C, Zhang Y, Shao H, Hu X. Hybrid silk fibers dry-spun from regenerated silk fibroin/graphene oxide aqueous solutions. ACS Appl Mater Interfaces 2016;8(5):3349–58. link1

[64] Mortimer B, Guan J, Holland C, Porter D, Vollrath F. Linking naturally and unnaturally spun silks through the forced reeling of Bombyx mori. Acta Biomater 2015;11:247–55. link1

[65] Zhang F, Lu Q, Yue X, Zuo B, Qin M, Li F, et al. Regeneration of high-quality silk fibroin fiber by wet spinning from CaCl2–formic acid solvent. Acta Biomater 2015;12:139–45. link1

[66] Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 2011;40(7):3941–94. link1

[67] Torres-Rendon JG, Schacher FH, Ifuku S, Walther A. Mechanical performance of macrofibers of cellulose and chitin nanofibrils aligned by wet-stretching: a critical comparison. Biomacromolecules 2014;15(7):2709–17. link1

[68] Benítez AJ, Walther A. Cellulose nanofibril nanopapers and bioinspired nanocomposites: a review to understand the mechanical property space. J Mater Chem A 2017;5(31):16003–24. link1

[69] Wang S, Jiang F, Xu X, Kuang Y, Fu K, Hitz E, et al. Super-strong, super-stiff macrofibers with aligned, long bacterial cellulose nanofibers. Adv Mater 2017;29(35):1702498. link1

[70] Fu J, Guerette PA, Pavesi A, Horbelt N, Lim CT, Harrington MJ, et al. Artificial hagfish protein fibers with ultra-high and tunable stiffness. Nanoscale 2017;9 (35):12908–15. link1

[71] Yao J, Chen S, Chen Y, Wang B, Pei Q, Wang H. Macrofibers with high mechanical performance based on aligned bacterial cellulose nanofibers. ACS Appl Mater Interfaces 2017;9(24):20330–9. link1

[72] He H, Yang C, Wang F, Wei Z, Shen J, Chen D, et al. Mechanically strong globular-protein-based fibers obtained using a microfluidic spinning technique. Angew Chem Int Ed Engl 2020;59(11):4344–8. link1

[73] Zhang J, Sun J, Li B, Yang C, Shen J, Wang N, et al. Robust biological fibers based on widely available proteins: facile fabrication and suturing application. Small 2020;16(8):1907598. link1

[74] Li Y, Li J, Sun J, He H, Li B, Ma C, et al. Bioinspired and mechanically strong fibers based on engineered non-spider chimeric proteins. Angew Chem Int Ed Engl 2020;59(21):8148–52. link1

[75] Xu Z, Shi L, Yang M, Zhu L. Preparation and biomedical applications of silk fibroin-nanoparticles composites with enhanced properties—a review. Mater Sci Eng C 2019;95:302–11. link1

[76] Kinloch IA, Suhr J, Lou J, Young RJ, Ajayan PM. Composites with carbon nanotubes and graphene: an outlook. Science 2018;362(6414):547–53. link1

[77] Wang Y, Guo J, Zhou L, Ye C, Omenetto FG, Kaplan DL, et al. Design, fabrication, and function of silk-based nanomaterials. Adv Funct Mater 2018;28(52):1805305. link1

[78] Pan H, Zhang Y, Shao H, Hu X, Li X, Tian F, et al. Nanoconfined crystallites toughen artificial silk. J Mater Chem B 2014;2(10):1408–14. link1

[79] Hu X, Li J, Bai Y. Fabrication of high strength graphene/regenerated silk fibroin composite fibers by wet spinning. Mater Lett 2017;194:224–6. link1

[80] Wu G, Song P, Zhang D, Liu Z, Li L, Huang H, et al. Robust composite silk fibers pulled out of silkworms directly fed with nanoparticles. Int J Biol Macromol 2017;104(Pt A):533–8. link1

[81] Cheng L, Huang H, Chen S, Wang W, Dai F, Zhao H. Characterization of silkworm larvae growth and properties of silk fibres after direct feeding of copper or silver nanoparticles. Mater Des 2017;129:125–34. link1

[82] Cai L, Shao H, Hu X, Zhang Y. Reinforced and ultraviolet resistant silks from silkworms fed with titanium dioxide nanoparticles. ACS Sustain Chem Eng 2015;3(10):2551–7. link1

[83] Wang JT, Li LL, Feng L, Li JF, Jiang LH, Shen Q. Directly obtaining pristine magnetic silk fibers from silkworm. Int J Biol Macromol 2014;63:205–9. link1

[84] Wang JT, Li LL, Zhang MY, Liu SL, Jiang LH, Shen Q. Directly obtaining high strength silk fiber from silkworm by feeding carbon nanotubes. Mater Sci Eng C 2014;34:417–21. link1

[85] Wang Q, Wang C, Zhang M, Jian M, Zhang Y. Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers. Nano Lett 2016;16(10):6695–700. link1

[86] Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, et al. Plastic waste inputs from land into the ocean. Science 2015;347 (6223):768–71. link1

[87] Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv 2017;3(7):1700782. link1

[88] Wang C, Li X, Gao E, Jian M, Xia K, Wang Qi, et al. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv Mater 2016;28(31):6640–8. link1

[89] Gan W, Chen C, Wang Z, Song J, Kuang Y, He S, et al. Dense, self-formed char layer enables a fire-retardant wood structural material. Adv Funct Mater 2019;29(14):1807444. link1

[90] Gan W, Chen C, Wang Z, Pei Y, Ping W, Xiao S, et al. Fire-resistant structural material enabled by an anisotropic thermally conductive hexagonal boron nitride coating. Adv Funct Mater 2020;30(10):1909196. link1

[91] Nechyporchuk O, Bordes R, Köhnke T. Wet spinning of flame-retardant cellulosic fibers supported by interfacial complexation of cellulose nanofibrils with silica nanoparticles. ACS Appl Mater Interfaces 2017;9(44):39069–77. link1

[92] Yang A, Cai L, Zhang R, Wang J, Hsu PC, Wang H, et al. Thermal management in nanofiber-based face mask. Nano Lett 2017;17(6):3506–10. link1

[93] Cai L, Song AY, Wu P, Hsu PC, Peng Y, Chen J, et al. Warming up human body by nanoporous metallized polyethylene textile. Nat Commun 2017;8(1):496. link1

[94] Hsu PC, Liu C, Song AY, Zhang Z, Peng Y, Xie J, et al. A dual-mode textile for human body radiative heating and cooling. Sci Adv 2017;3(11):1700895. link1

[95] Cui Y, Gong H, Wang Y, Li D, Bai H. A thermally insulating textile inspired by polar bear hair. Adv Mater 2018;30(14):1706807. link1

[96] He XH, Wang W, Liu YM, Jiang MY, Wu F, Deng K, et al. Microfluidic fabrication of bio-inspired microfibers with controllable magnetic spindleknots for 3D assembly and water collection. ACS Appl Mater Interfaces 2015;7(31):17471–81. link1

[97] Tansil NC, Koh LD, Han MY. Functional silk: colored and luminescent. Adv Mater 2012;24(11):1388–97. link1

[98] Song Y, Lin Z, Kong L, Xing Y, Lin N, Zhang Z, et al. Meso-functionalization of silk fibroin by upconversion fluorescence and near infrared in vivo biosensing. Adv Funct Mater 2017;27(26):1700628. link1

[99] Min K, Kim S, Kim CG, Kim S. Colored and fluorescent nanofibrous silk as a physically transient chemosensor and vitamin deliverer. Sci Rep 2017;7(1):5448. link1

[100] Kim DW, Lee OJ, Kim SW, Ki CS, Chao JR, Yoo H, et al. Novel fabrication of fluorescent silk utilized in biotechnological and medical applications. Biomaterials 2015;70:48–56. link1

[101] Cheng L, Zhao H, Huang H, Li B, Li RKY, Feng XQ, et al. Quantum dotsreinforced luminescent silkworm silk with superior mechanical properties and highly stable fluorescence. J Mater Sci 2019;54(13):9945–57. link1

[102] Zhu B, Wang H, Leow WR, Cai Y, Loh XJ, Han MY, et al. Silk fibroin for flexible electronic devices. Adv Mater 2016;28(22):4250–65. link1

[103] Wang C, Xia K, Wang H, Liang X, Yin Z, Zhang Y. Advanced carbon for flexible and wearable electronics. Adv Mater 2019;31(9):1801072. link1

[104] Ye C, Ren J, Wang Y, Zhang W, Qian C, Han J, et al. Design and fabrication of silk templated electronic yarns and applications in multifunctional textiles. Matter 2019;1(5):1411–25. link1

[105] Qi H, Schulz B, Vad T, Liu J, Mäder E, Seide G, et al. Novel carbon nanotube/cellulose composite fibers as multifunctional materials. ACS Appl Mater Interfaces 2015;7(40):22404–12. link1

[106] Xue Y, Mou Z, Xiao H. Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications. Nanoscale 2017;9(39):14758–81. link1

[107] Aigner TB, DeSimone E, Scheibel T. Biomedical applications of recombinant silk-based materials. Adv Mater 2018;30(19):1704636. link1

[108] DeFrates K, Moore R, Borgesi J, Lin G, Mulderig T, Beachley V, et al. Protein-based fiber materials in medicine: a review. Nanomaterials 2018;8 (7):457. link1

[109] Haynl C, Hofmann E, Pawar K, Förster S, Scheibel T. Microfluidics-produced collagen fibers show extraordinary mechanical properties. Nano Lett 2016;16 (9):5917–22. link1

[110] Shang L, Fu F, Cheng Y, Yu Y, Wang J, Gu Z, et al. Bioinspired multifunctional spindle-knotted microfibers from microfluidics. Small 2017;13(4):1600286. link1

[111] Wang YL, Zhou YN, Li XY, Huang J, Wahid F, Zhong C, et al. Continuous production of antibacterial carboxymethyl chitosan–zinc supramolecular hydrogel fiber using a double-syringe injection device. Int J Biol Macromol 2020;156:252–61. link1

[112] Xia XX, Qian ZG, Ki CS, Park YH, Kaplan DL, Lee SY. Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc Natl Acad Sci USA 2010;107(32):14059–63. link1

[113] Andersson M, Jia Q, Abella A, Lee XY, Landreh M, Purhonen P, et al. Biomimetic spinning of artificial spider silk from a chimeric minispidroin. Nat Chem Biol 2017;13(3):262–4. link1

[114] Heidebrecht A, Eisoldt L, Diehl J, Schmidt A, Geffers M, Lang G, et al. Biomimetic fibers made of recombinant spidroins with the same toughness as natural spider silk. Adv Mater 2015;27(13):2189–94. link1

[115] Asakura T, Umemura K, Nakazawa Y, Hirose H, Higham J, Knight D. Some observations on the structure and function of the spinning apparatus in the silkworm Bombyx mori. Biomacromolecules 2007;8(1):175–81. link1

[116] Moriya M, Ohgo K, Masubuchi Y, Knight DP, Asakura T. Micro-computerized tomographic observation of the spinning apparatus in Bombyx mori silkworms. Polymer 2008;49(26):5665–9. link1

[117] Luo J, Zhang L, Peng Q, Sun M, Zhang Y, Shao H, et al. Tough silk fibers prepared in air using a biomimetic microfluidic chip. Int J Biol Macromol 2014;66:319–24. link1

[118] Holland C, Terry AE, Porter D, Vollrath F. Comparing the rheology of native spider and silkworm spinning dope. Nat Mater 2006;5(11):870–4. link1

[119] Moriya M, Ohgo K, Masubuchi Y, Asakura T. Flow analysis of aqueous solution of silk fibroin in the spinneret of Bombyx mori silkworm by combination of viscosity measurement and finite element method calculation. Polymer 2008;49(4):952–6. link1

[120] Breslauer DN, Lee LP, Muller SJ. Simulation of flow in the silk gland. Biomacromolecules 2009;10(1):49–57. link1

[121] Holland C, Urbach JS, Blair DL. Direct visualization of shear dependent silk fibrillogenesis. Soft Matter 2012;8(9):2590–4. link1

[122] Mohammadi P, Aranko AS, Landowski CP, Ikkala O, Jaudzems K, Wagermaier W, et al. Biomimetic composites with enhanced toughening using silkinspired triblock proteins and aligned nanocellulose reinforcements. Sci Adv 2019;5(9):eaaw2541. link1

[123] Tian M, Qu L, Zhang X, Zhang K, Zhu S, Guo X, et al. Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers. Carbohydr Polym 2014;111:456–62. link1

[124] Yao Y, Zhang E, Xia X, Yu J, Wu K, Zhang Y, et al. Morphology and properties of cellulose/silk fibroin blend fiber prepared with 1-butyl-3- methylimidazolium chloride as solvent. Cellulose 2015;22(1):625–35. link1

[125] Yaari A, Schilt Y, Tamburu C, Raviv U, Shoseyov O. Wet spinning and drawing of human recombinant collagen. ACS Biomater Sci Eng 2016;2(3):349–60. link1

Related Research