Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 24, Issue 5 doi: 10.1016/j.eng.2021.08.032

Engineering of Sodium-ion Batteries: Opportunities and Challenges

a School of Materials Science and Engineering, Peking University, Beijing 100871, China
b Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Beijing 100871, China
c Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), Beijing 100871, China

Received: 2021-05-16 Revised: 2021-08-14 Accepted: 2021-08-19 Available online: 2022-05-26

Next Previous

Abstract

The recent proliferation of sustainable and eco-friendly renewable energy engineering is a hot topic of worldwide significance with regard to combatting the global environmental crisis. To curb renewable energy intermittency and integrate renewables into the grid with stable electricity generation, secondary battery-based electrical energy storage (EES) technologies are regarded as the most promising solution, due to their prominent capability to store and harvest green energy in a safe and cost-effective way. Due to the wide availability and low cost of sodium resources, sodium-ion batteries (SIBs) are regarded as a promising alternative for next-generation large-scale EES systems. This review discusses in detail the key differences between lithium-ion batteries (LIBs) and SIBs for different application requirements and describes the current understanding of SIBs. By comparing technological evolutions among LIBs, lead-acid batteries (LABs), and SIBs, the advantages of SIBs are unraveled. This review also offers highlights on commercial achievements that have been realized based on current SIB technology, focusing on an introduction of five major SIB companies, each with SIB chemistry and technology, as well as commercialized SIB products. Last but not least, it discusses outlooks and key challenges for the commercialization of next-generation SIBs.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

References

[ 1 ] Arunachalam VS, Fleischer EL. The global energy landscape and materials innovation. MRS Bull 2008;33(4):264‒88. link1

[ 2 ] Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science 2011;334(6058):928‒35. link1

[ 3 ] Tarascon JM. Is lithium the new gold? Nat Chem 2010;2(6):510. link1

[ 4 ] Ginley D, Green MA, Collins R. Solar energy conversion toward 1 terawatt. MRS Bull 2008;33(4):355‒64. link1

[ 5 ] Holdren JP. Energy and sustainability. Science 2007;315(5813):737. link1

[ 6 ] Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, et al. Electrochemical energy storage for green grid. Chem Rev 2011;111(5):3577‒613. link1

[ 7 ] Kundu D, Talaie E, Duffort V, Nazar LF. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed Engl 2015;54(11):3431‒48. link1

[ 8 ] Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 2015;7(1):19‒29. link1

[ 9 ] Goodenough JB. Energy storage materials: a perspective. Energy Storage Mater 2015;1:158‒61. link1

[10] Chen R, Luo R, Huang Y, Wu F, Li L. Advanced high energy density secondary batteries with multi-electron reaction materials. Adv Sci 2016;3(10):1600051. link1

[11] Armand M, Tarascon JM. Building better batteries. Nature 2008;451(7179):652‒7. link1

[12] Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature 2001;414(6861):359‒67. link1

[13] Grosjean C, Miranda PH, Perrin M, Poggi P. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renew Sustain Energy Rev 2012;16(3):1735‒44. link1

[14] Wadia C, Albertus P, Srinivasan V. Resource constraints on the battery energy storage potential for grid and transportation applications. J Power Sources 2011;196(3):1593‒8. link1

[15] Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y. Progress in electrical energy storage system: a critical review. Prog Nat Sci 2009;19(3):291‒312. link1

[16] Bones RJ, Teagle DA, Brooker SD, Cullen FL. Development of a Ni, NiCl2 positive electrode for a liquid sodium (ZEBRA) battery cell. J Electrochem Soc 1989;136(5):1274‒7. link1

[17] Oshima T, Kajita M, Okuno A. Development of sodium‒sulfur batteries. Int J Appl Ceram Technol 2004;1(3):269‒76. link1

[18] Dustmann CH. Advances in ZEBRA batteries. J Power Sources 2004;127(1‒2):85‒92.

[19] Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chem Rev 2014;114(23):11636‒82. link1

[20] Ali Z, Zhang T, Asif M, Zhao L, Yu Y, Hou Y. Transition metal chalcogenide anodes for sodium storage. Mater Today 2020;35:131‒67. link1

[21] Wu F, Zhao C, Chen S, Lu Y, Hou Y, Hu YS, et al. Multi-electron reaction materials for sodium-based batteries. Mater Today 2018;21(9):960‒73. link1

[22] Tarascon JM, Hull GW. Sodium intercalation into the layer oxides NaxMo2O4. Solid State Ion 1986;22(1):85‒96. link1

[23] Carmichael RS, editor. Practical handbook of physical properties of rocks and minerals. Boca Raton: CRC Press; 1989.

[24] Kuratani K, Uemura N, Senoh H, Takeshita HT, Kiyobayashi T. Conductivity, viscosity and density of MClO4 (M = Li and Na) dissolved in propylene carbonate and γ-butyrolactone at high concentrations. J Power Sources 2013;223:175‒82. link1

[25] Zhao LN, Zhang T, Zhao HL, Hou YL. Polyanion-type electrode materials for advanced sodium-ion batteries. Mater Today Nano 2020;10:100072. link1

[26] Zhang T, Zhang L, Zhao L, Huang X, Hou Y. Catalytic effects in the cathode of Li‒S batteries: accelerating polysulfides redox conversion. EnergyChem 2020;2(4):100036. link1

[27] Slater MD, Kim D, Lee E, Johnson CS. Sodium-ion batteries. Adv Funct Mater 2013;23(8):947‒58. link1

[28] Manthiram A, Choi J. Chemical and structural instabilities of lithium ion battery cathodes. J Power Sources 2006;159(1):249‒53. link1

[29] Winter M, Besenhard JO, Spahr ME, Novák P. Insertion electrode materials for rechargeable lithium batteries. Adv Mater 1998;10(10):725‒63. link1

[30] Scrosati B. Lithium rocking chair batteries: an old concept. J Electrochem Soc 1992;139(10):2776‒81. link1

[31] Li S, Qiu J, Lai C, Ling M, Zhao H, Zhang S. Surface capacitive contributions: towards high rate anode materials for sodium ion batteries. Nano Energy 2015;12:224‒30. link1

[32] Ali Z, Asif M, Huang X, Tang T, Hou Y. Hierarchically porous Fe2CoSe4 binary-metal selenide for extraordinary rate performance and durable anode of sodium-ion batteries. Adv Mater 2018;30(36):1802745. link1

[33] Xiao L, Cao Y, Henderson WA, Sushko ML, Shao Y, Xiao J, et al. Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy 2016;19:279‒88. link1

[34] Zhang T, Zhang L, Zhao L, Huang X, Li W, Li T, et al. Free-standing, foldable V2O3/multichannel carbon nanofibers electrode for flexible Li-ion batteries with ultralong lifespan. Small 2020;16(47):2005302. link1

[35] Shannon RD. Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 1976;32(5):751‒67. link1

[36] Chen S, Wu C, Shen L, Zhu C, Huang Y, Xi K, et al. Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv Mater 2017;29(48):1700431. link1

[37] Okoshi M, Yamada Y, Yamada A, Nakai H. Theoretical analysis on de-solvation of lithium, sodium, and magnesium cations to organic electrolyte solvents. J Electrochem Soc 2013;160(11):A2160‒5. link1

[38] Yamada Y, Iriyama Y, Abe T, Ogumi Z. Kinetics of lithium ion transfer at the interface between graphite and liquid electrolytes: effects of solvent and surface film. Langmuir 2009;25(21):12766‒70. link1

[39] Yamada Y, Koyama Y, Abe T, Ogumi Z. Correlation between charge‒discharge behavior of graphite and solvation structure of the lithium ion in propylene carbonate-containing electrolytes. J Phys Chem C 2009;113(20):8948‒53. link1

[40] Lide DR, editor. CRC handbook of chemistry and physics. Boca Raton: CRC Press; 2003.

[41] Berg EJ, Villevieille C, Streich D, Trabesinger S, Novák P. Rechargeable batteries: grasping for the limits of chemistry. J Electrochem Soc 2015;162(14):A2468‒75. link1

[42] Peters JF, Cruz AP, Weil M. Exploring the economic potential of sodium-ion batteries. Batteries 2019;5(1):10. link1

[43] Liu T, Dai A, Lu J, Yuan Y, Xiao Y, Yu L, et al. Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery. Nat Commun 2019;10(1):4721. link1

[44] Huang Q, Song J, Gao Y, Wang D, Liu S, Peng S, et al. Supremely elastic gel polymer electrolyte enables a reliable electrode structure for silicon-based anodes. Nat Commun 2019;10(1):5586. link1

[45] Niu YB, Guo YJ, Yin YX, Zhang SY, Wang T, Wang P, et al. High-efficiency cathode sodium compensation for sodium-ion batteries. Adv Mater 2020;32(33):2001419. link1

[46] Zhao L, Zhao H, Du Z, Wang J, Long X, Li Z, et al. Delicate lattice modulation enables superior Na storage performance of Na3V2(PO4)3 as both an anode and cathode material for sodium-ion batteries: understanding the role of calcium substitution for vanadium. J Mater Chem A 2019;7(16):9807‒14. link1

[47] Ni Q, Bai Y, Wu F, Wu C. Polyanion-type electrode materials for sodium-ion batteries. Adv Sci 2017;4(3):1600275. link1

[48] Barpanda P, Nishimura SI, Yamada A. High-voltage pyrophosphate cathodes. Adv Energy Mater 2012;2(7):841‒59. link1

[49] Bauer A, Song J, Vail S, Pan W, Barker J, Lu Y. The scale-up and commercialization of nonaqueous Na-ion battery technologies. Adv Energy Mater 2018;8(17):1702869. link1

[50] Zhao C, Wang Q, Yao Z, Wang J, Sánchez-Lengeling B, Ding F, et al. Rational design of layered oxide materials for sodium-ion batteries. Science 2020;370(6517):708‒11. link1

[51] Rong X, Liu J, Hu E, Liu Y, Wang Y, Wu J, et al. Structure-induced reversible anionic redox activity in Na layered oxide cathode. Joule 2018;2(1):125‒40. link1

[52] Zhao L, Zhao H, Long X, Li Z, Du Z. Superior high-rate and ultralong-lifespan Na3V2(PO4)3@C cathode by enhancing the conductivity both in bulk and on surface. ACS Appl Mater Interfaces 2018;10(42):35963‒71. link1

[53] Zhao L, Zhao H, Wang J, Zhang Y, Li Z, Du Z, et al. Micro/nano Na3V2(PO4)3/N-doped carbon composites with a hierarchical porous structure for high-rate pouch-type sodium-ion full-cell performance. ACS Appl Mater Interfaces 2021;13(7):8445‒54. link1

[54] Xu C, Zhao J, Wang E, Liu X, Shen X, Rong X, et al. A novel NASICON-typed Na4VMn0.5Fe0.5(PO4)3 cathode for high-performance Na-ion batteries. Adv Energy Mater 2021;11(22):2100729. link1

[55] Zhao L, Zhao H, Du Z, Chen N, Chang X, Zhang Z, et al. Computational and experimental understanding of Al-doped Na3V2-xAlx(PO4)3 cathode material for sodium ion batteries: electronic structure, ion dynamics and electrochemical properties. Electrochim Acta 2018;282:510‒9. link1

[56] Qi Y, Tong Z, Zhao J, Ma L, Wu T, Liu H, et al. Scalable room-temperature synthesis of multi-shelled Na3(VOPO4)2F microsphere cathodes. Joule 2018;2(11):2348‒63. link1

[57] Shen X, Zhou Q, Han M, Qi X, Li B, Zhang Q, et al. Rapid mechanochemical synthesis of polyanionic cathode with improved electrochemical performance for Na-ion batteries. Nat Commun 2021;12(1):2848. link1

[58] Wu Z, Xie J, Xu Z, Zhang S, Zhang Q. Recent progress in metal‒organic polymers as promising electrodes for lithium/sodium rechargeable batteries. J Mater Chem A 2019;7(9):4259‒90. link1

[59] Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, et al. Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 2014;5(1):4033. link1

[60] Zhang Y, Qin J, Lowe SE, Li W, Zhu Y, Al-Mamun M, et al. Enhanced electrochemical production and facile modification of graphite oxide for cost-effective sodium ion battery anodes. Carbon 2021;177:71‒8. link1

[61] Long B, Qiao Z, Zhang J, Zhang S, Balogun MS, Lu J, et al. Polypyrrole-encapsulated amorphous Bi2S3 hollow sphere for long life sodium ion batteries and lithium‒sulfur batteries. J Mater Chem A 2019;7(18):11370‒8. link1

[62] Zhao L, Rong X, Niu Y, Xu R, Zhang T, Li T, et al. Ostwald ripening tailoring hierarchically porous Na3V2(PO4)2O2F hollow nanospheres for superior high-rate and ultrastable sodium ion storage. Small 2020;16(48):2004925. link1

[63] Guo JZ, Wang PF, Wu XL, Zhang XH, Yan Q, Chen H, et al. High-energy/power and low-temperature cathode for sodium-ion batteries: in situ XRD study and superior full-cell performance. Adv Mater 2017;29(33):1701968. link1

[64] Kim H, Yoon G, Park I, Park KY, Lee B, Kim J, et al. Anomalous Jahn‒Teller behavior in a manganese-based mixed-phosphate cathode for sodium ion batteries. Energy Environ Sci 2015;8(11):3325‒35. link1

[65] Barpanda P, Oyama G, Nishimura SI, Chung SC, Yamada A. A 3.8-V earth-abundant sodium battery electrode. Nat Commun 2014;5(1):4358. link1

[66] Górka J, Vix-Guterl C, CM Ghimbeu. Recent progress in design of biomass-derived hard carbons for sodium ion batteries. J Carbon Res 2016;2(4):24. link1

[67] Li Y, Hu YS, Titirici MM, Chen L, Huang X. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv Energy Mater 2016;6(18):1600659. link1

[68] Kamiyama A, Kubota K, Igarashi D, Youn Y, Tateyama Y, Ando H, et al. MgO-template synthesis of extremely high capacity hard carbon for Na-ion battery. Angew Chem Int Ed Engl 2021;60(10):5114‒20. link1

[69] Rudola A, Rennie AJR, Heap R, Meysami SS, Lowbridge A, Mazzali F, et al. Commercialisation of high energy density sodium-ion batteries: Faradion’s journey and outlook. J Mater Chem A 2021;9(13):8279‒302. link1

[70] Xu SY, Wu XY, Li YM, Hu YS, Chen LQ. Novel copper redox-based cathode materials for room-temperature sodium-ion batteries. Chin Phys B 2014;23(11):118202. link1

[71] Li Y, Yang Z, Xu S, Mu L, Gu L, Hu YS, et al. Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries. Adv Sci 2015;2(6):1500031. link1

[72] Mu L, Xu S, Li Y, Hu YS, Li H, Chen L, et al. Prototype sodium-ion batteries using an air-stable and Co/Ni-Free O3-layered metal oxide cathode. Adv Mater 2015;27(43):6928‒33. link1

[73] Rong X, Lu Y, Qi X, Zhou Q, Kong W, Tang K, et al. Na-ion batteries: from fundamental research to engineering exploration. Energy Storage Sci Technol 2020;9(2):515‒22.

[74] Li Y, Hu YS, Qi X, Rong X, Li H, Huang X, et al. Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications. Energy Storage Mater 2016;5:191‒7. link1

[75] Lu Y, Zhao C, Qi X, Qi Y, Li H, Huang X, et al. Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance. Adv Energy Mater 2018;8(27):1800108. link1

[76] Meng QS, Lu YX, Ding FX, Zhang QQ, Chen LQ, Hu YS. Tuning the closed pore structure of hard carbons with the highest Na storage capacity. ACS Energy Lett 2019;4(11):2608‒12. link1

[77] Hu YS, Komaba S, Forsyth M, Johnson C, Rojo T. A new emerging technology: Na-ion batteries. Small Methods 2019;3(4):1900184. link1

[78] Lee HW, Wang RY, Pasta M, Lee SW, Liu N, Cui Y. Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries. Nat Commun 2014;5(1):5280. link1

[79] Pasta M, Wessells CD, Liu N, Nelson J, McDowell MT, Huggins RA, et al. Full open-framework batteries for stationary energy storage. Nat Commun 2014;5(1):3007. link1

Related Research