Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 16, Issue 9 doi: 10.1016/j.eng.2022.03.015

A Polarization Programmable Antenna Array

a Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361000, China
b School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
c Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
d Global Big Data Technologies Centre, University of Technology Sydney (UTS), NSW 2007, Australia

Received:2021-09-03 Revised:2022-01-06 Accepted: 2022-03-27 Available online:2022-05-06

Next Previous

Abstract

Reconfigurable antennas are becoming a major antenna technology for future wireless communications and sensing systems. It is known that, with a single linear polarization (LP) reconfigurable antenna element, a preferred polarization can be produced from a set of multiple polarization states, thus improving the quality of the communication link. This paper presents a new concept of a polarization programmable reconfigurable antenna array that consists of a number of polarization reconfigurable antenna elements with a finite number of possible polarization states. By employing a new optimization strategy and programming the polarization states of all the array elements, we demonstrate that it is possible to realize any desired LP in the vectorial array radiation pattern with accurate control of sidelobe and crosspolarization levels (XPLs), thereby achieving the desired polarization to perfectly match that of the required communications signal. Both numerical and experimental results are provided to prove the concept, and they agree well with each other.

Image

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

References

[1]  Aghdam SA. Reconfigurable antenna with a diversity filtering band feature utilizing active devices for communication systems. IEEE Trans Antennas Propag 2013;61(10):5223–8. link1

[2]  Trinh LH, Ferrero F, Lizzi L, Staraj R, Ribero JM. Reconfigurable antenna for future spectrum reallocations in 5G communications. IEEE Antennas Wirel Propag Lett 2016;15:1297–300. link1

[3]  Ikram M, Abbas EA, Nguyen-Trong N, Sayidmarie KH, Abbosh A. Integrated frequency-reconfigurable slot antenna and connected slot antenna array for 4G and 5G mobile handsets. IEEE Trans Antennas Propag 2019;67(12):7225–33. link1

[4]  Yang X, Liu Y, Lei H, Jia Y, Zhu P, Zhou Z. A radiation pattern reconfigurable Fabry–Pérot antenna based on liquid metal. IEEE Trans Antennas Propag 2020;68(11):7658–63. link1

[5]  Zhang L, Sun Y, He Y, Wong SW, Mao C, Ge L, et al. A quad-polarization reconfigurable antenna with suppressed cross polarization based on characteristic mode theory. IEEE Trans Antennas Propag 2021;69(2):636–47. link1

[6]  Gao S, Sambell A, Zhong SS. Polarization-agile antennas. IEEE Antennas Propag Mag 2006;48(3):28–37. link1

[7]  Qin PY, Weily AR, Guo YJ, Liang CH. Polarization reconfigurable U-slot patch antenna. IEEE Trans Antennas Propag 2010;58(10):3383–8. link1

[8]  Row JS, Hou MJ. Design of polarization diversity patch antenna based on a compact reconfigurable feeding network. IEEE Trans Antennas Propag 2014;62(10):5349–52. link1

[9]  Tran HH, Nguyen-Trong N, Le TT, Park HC. Wideband and multipolarization reconfigurable crossed bowtie dipole antenna. IEEE Trans Antennas Propag 2017;65(12):6968–75. link1

[10]  Hu J, Hao ZC, Hong W. Design of a wideband quad-polarization reconfigurable patch antenna array using a stacked structure. IEEE Trans Antennas Propag 2017;65(6):3014–23. link1

[11]  Wu F, Luk KM. A reconfigurable magneto–electric dipole antenna using bent cross-dipole feed for polarization diversity. IEEE Antennas Wirel Propag Lett 2017;16:412–5. link1

[12]  Yang W, Che W, Jin H, Feng W, Xue Q. A polarization-reconfigurable dipole antenna using polarization rotation AMC structure. IEEE Trans Antennas Propag 2015;63(12):5305–15. link1

[13]  Cui Y, Qi C, Li R. A low-profile broadband quad-polarization reconfigurable omnidirectional antenna. IEEE Trans Antennas Propag 2019;67(6):4178–83. link1

[14]  Tran HH, Park HC. Wideband reconfigurable antenna with simple biasing circuit and tri-polarization diversity. IEEE AntennasWirel Propag Lett 2019;18(10): 2001–5. link1

[15]  Liu P, Jiang W, Sun S, Xi Y, Gong S. Broadband and low-profile penta-polarization reconfigurable metamaterial antenna. IEEE Access 2020;8:21823–31. link1

[16]  Tran HH, Nguyen-Trong N, Le TT, Abbosh AM, Park HC. Low-profile wideband high-gain reconfigurable antenna with quad-polarization diversity. IEEE Trans Antennas Propag 2018;66(7):3741–6. link1

[17]  Wong H, Lin W, Huitema L, Arnaud E. Multi-polarization reconfigurable antenna for wireless biomedical system. IEEE Trans Biomed Circuits Syst 2017;11(3):652–60. link1

[18]  Nguyen-Trong N, Piotrowski A, Hall L, Fumeaux C. A frequency- and polarization-reconfigurable circular cavity antenna. IEEE Antennas Wirel Propag Lett 2017;16:999–1002. link1

[19]  Chang LH, Lai WC, Cheng JC, Hsue CW. A symmetrical reconfigurable multipolarization circular patch antenna. IEEE Antennas Wirel Propag Lett 2014;13:87–90. link1

[20]  Yang Y, Zhu X. A wideband reconfigurable antenna with 360 beam steering for 802.11ac WLAN applications. IEEE Trans Antennas Propag 2018;66(2):600–8. link1

[21]  Gu H, Wang J, Ge L, Sim CYD. A new quadri-polarization reconfigurable circular patch antenna. IEEE Access 2016;4:4646–51. link1

[22]  Chen SL, Wei F, Qin PY, Guo YJ, Chen X. A multi-linear polarization reconfigurable unidirectional patch antenna. IEEE Trans Antennas Propag 2017;65(8):4299–304. link1

[23]  Lin W, Wong H. Multipolarization-reconfigurable circular patch antenna with L-shaped probes. IEEE Antennas Wirel Propag Lett 2017;16:1549–52. link1

[24]  Sano M, Higaki M. A linearly polarized patch antenna with a continuously reconfigurable polarization plane. IEEE Trans Antennas Propag 2019;67(8): 5678–83. link1

[25]  Xu C, Wang Y, Wu J, Wang Z. Parasitic circular patch antenna with continuously tunable linear polarization using liquid metal alloy. Microw Opt Technol Lett 2019;61(3):727–33. link1

[26]  Tanaka M. Polarization-changeable phased array. In: Proceedings of IEEE Antennas and Propagation Society International Symposium; 1999 Jul 11–16; Orlando, FL, USA. IEEE; 1999. p. 2322–5.

[27]  Li J, Compton RT. Angle and polarization estimation using ESPRIT with a polarization sensitive array. IEEE Trans Antennas Propag 1991;39(9): 1376–83. link1

[28]  Haskins PM, Dahele JS. Polarisation agile active microstrip patch arrays. Electron Lett 1996;32(6):509–11. link1

[29]  Li W, Gao S, Cai Y, Luo Q, Sobhy M, Wei G, et al. Polarization-reconfigurable circularly polarized planar antenna using switchable polarizer. IEEE Trans Antennas Propag 2017;65(9):4470–7. link1

[30]  Slomian I, Wincza K, Gruszczynski S. Series-fed microstrip antenna lattice with switched polarization utilizing butler matrix. IEEE Trans Antennas Propag 2014;62(1):145–52. link1

[31]  Lin W, Wong H. Polarization reconfigurable aperture-fed patch antenna and array. IEEE Access 2016;4:1510–7. link1

[32]  Shirazi M, Li T, Huang J, Gong X. A reconfigurable dual-polarization slot-ring antenna element with wide bandwidth for array applications. IEEE Trans Antennas Propag 2018;66(11):5943–54. link1

[33]  Haupt RL, Werner DH. Genetic algorithms in electromagnetics. Hoboken: John Wiley & Sons; 2007. link1

[34]  Jin N, Rahmat-Samii Y. Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations. IEEE Trans Antennas Propag 2007;55(3):556–67. link1

[35]  Keizer WPMN. Fast low-sidelobe synthesis for large planar array antennas utilizing successive fast Fourier transforms of the array factor. IEEE Trans Antennas Propag 2007;55(3):715–22. link1

[36]  Lebret H, Boyd S. Antenna array pattern synthesis via convex optimization. IEEE Trans Signal Process 1997;45(3):526–32. link1

[37]  Haupt RL, Aten DW. Low sidelobe arrays via dipole rotation. IEEE Trans Antennas Propag 2009;57(5):1575–9. link1

[38]  Li M, Liu Y, Chen SL, Qin PY, Guo YJ. Low sidelobe synthesis of dipole arrays by element orientation selection using binary coded genetic algorithm. In: Proceedings of 2017 11th European Conference on Antennas and Propagation (EUCAP); 2017 Mar 19–24; Paris, France. IEEE; 2017. p. 2838–40. link1

[39]  Echeveste JI, Rubio J, Aza MAGD, Craeye C. Pattern synthesis of coupled antenna arrays via element rotation. IEEE Antennas Wirel Propag Lett 2017;16:1707–10. link1

[40]  Li M, Liu Y, Guo YJ. Shaped power pattern synthesis of a linear dipole array by element rotation and phase optimization using dynamic differential evolution. IEEE Antennas Wirel Propag Lett 2018;17(4):697–701. link1

[41]  Liu F, Liu Y, Xu KD, Ban YL, Liu QH, Guo YJ. Synthesizing uniform amplitude sparse dipole arrays with shaped patterns by joint optimization of element positions, rotations and phases. IEEE Trans Antennas Propag 2019;67(9): 6017–28. link1

[42]  Ludwig A. The definition of cross polarization. IEEE Trans Antennas Propag 1973;21(1):116–9. link1

[43]  Pampara G, Engelbrecht AP, Franken N. In: Binary differential evolution. Vancouver, BC, Canada: IEEE; 2006. p. 1873–9. link1

[44]  infineon.com [Internet]. Munich: Infineon Technologies AG; c1999–2022 [cited 2021 Sep 3]. Available from: https://www.infineon.com/. link1

[45]  china-fenghua [Internet]. Zhaoqing: Guangdong Fenghua Advanced Technology Holding Co., Ltd.; c2017 [cited 2021 Sep 3]. Available from: http://www.china-fenghua.com/.

[46]  Stutzman WL, Thiele GA. Antenna theory and design. 2nd ed. Hoboken: John Wiley & Sons; 1998. link1

Related Research