Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 25, Issue 6 doi: 10.1016/j.eng.2022.04.021

Artificial Intelligence for Retrosynthesis Prediction

a College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
b Department of Computer Science, City University of Hong Kong, Hong Kong 999077, China
c Shanghai Institute for Advanced Study, Zhejiang University, Shanghai 201203, China
d Shanghai Artificial Intelligence Laboratory, Shanghai 201203, China
e Department of Computer Science, Stanford University, Stanford, 94305–2004, USA
f Department of Chemical Engineering and Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, 02139, USA

Received: 2021-09-21 Revised: 2022-02-04 Accepted: 2022-04-05 Available online: 2022-08-20

Next Previous

Abstract

In recent years, there has been a dramatic rise in interest in retrosynthesis prediction with artificial intelligence (AI) techniques. Unlike conventional retrosynthesis prediction performed by chemists and by rule-based expert systems, AI-driven retrosynthesis prediction automatically learns chemistry knowledge from off-the-shelf experimental datasets to predict reactions and retrosynthesis routes. This provides an opportunity to address many conventional challenges, including heavy reliance on extensive expertise, the sub-optimality of routes, and prohibitive computational cost. This review describes the current landscape of AI-driven retrosynthesis prediction. We first discuss formal definitions of the retrosynthesis problem and review the outstanding research challenges therein. We then review the related AI techniques and recent progress that enable retrosynthesis prediction. Moreover, we propose a novel landscape that provides a comprehensive categorization of different retrosynthesis prediction components and survey how AI reshapes each component. We conclude by discussing promising areas for future research.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

References

[ 1 ] Nicolaou KC, Vourloumis D, Winssinger N, Baran PS. The art and science of total synthesis at the dawn of the twenty-first century. Angew Chem Int Ed 2000;39(1):44‒122. link1

[ 2 ] Nicolaou KC, Rigol S, Yu R. Total synthesis endeavors and their contributions to science and society: a personal account. CCS Chem 2019;1(1):3‒37. link1

[ 3 ] Schneider G. Trends in virtual combinatorial library design. Curr Med Chem 2002;9(23):2095‒101. link1

[ 4 ] Corey EJ, Wipke WT. Computer-assisted design of complex organic syntheses: pathways for molecular synthesis can be devised with a computer and equipment for graphical communication. Science 1969;166(3902):178‒92. link1

[ 5 ] Chen J, Baldi P. No electron left behind: a rule-based expert system to predict chemical reactions and reaction mechanisms. J Chem Inf Model 2009;49(9): 2034‒43. link1

[ 6 ] Szymkuć S, Gajewska EP, Klucznik T, Molga K, Dittwald P, Startek M, et al. Computer-assisted synthetic planning: the end of the beginning. Angew Chem Int Ed 2016;55(20):5904‒37. link1

[ 7 ] Liu B, Ramsundar B, Kawthekar P, Shi J, Gomes J, Nguyen QL, et al. Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS Cent Sci 2017;3(10):1103‒13. link1

[ 8 ] Yan C, Ding Q, Zhao P, Zheng S, Yang J, Yu Y, et al. RetroXpert: decompose retrosynthesis prediction like a chemist. In: Proceedings of the 34th Conference on Neural Information Processing Systems (NeurIPS 2020); 2020 Dec 6‒12; online. 2020. p. 11248‒58. link1

[ 9 ] Raymond JW, Willett P. Maximum common subgraph isomorphism algorithms for the matching of chemical structures. J Comput Aided Mol Des 2002;16(7):521‒33. link1

[10] Dai H, Li C, Coley CW, Dai B, Song L. Retrosynthesis prediction with conditional graph logic network. In: Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019); 2019 Dec 8‒14; Vancouver, BC, Canada. 2019. p. 8872‒82.

[11] Coley CW, Rogers L, Green WH, Jensen KF. Computer-assisted retrosynthesis based on molecular similarity. ACS Cent Sci 2017;3(12):1237‒45. link1

[12] Fick R, Ihlenfeldt WD, Gasteiger J. Computer-assisted design of syntheses for heterocyclic compounds. Heterocycles 1995;40(2):993‒1007. link1

[13] Mikulak-Klucznik B, Gołe˛biowska P, Bayly AA, Popik O, Klucznik T, Szymkuć S, et al. Computational planning of the synthesis of complex natural products. Nature 2020;588(7836):83‒8. link1

[14] Coley CW, Thomas DA, Lummiss JAM, Jaworski JN, Breen CP, Schultz V, et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 2019;365(6453). eaax1566. link1

[15] Schwaller P, Petraglia R, Zullo V, Nair VH, Haeuselmann RA, Pisoni R, et al. Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy. Chem Sci 2020;11(12):3316‒25. link1

[16] Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 1988;28(1):31‒6. link1

[17] Shi C, Xu M, Guo H, Zhang M, Tang J. A graph to graphs framework for retrosynthesis prediction. In: Proceedings of the 37th International Conference on Machine Learning; 2020 Jul 12‒18; online. 2020. p. 8818‒27.

[18] Chen WL, Chen DZ, Taylor KT. Automatic reaction mapping and reaction center detection. Wiley Interdiscip Rev Comput Mol Sci 2013;3(6):560‒93. link1

[19] Zheng S, Rao J, Zhang Z, Xu J, Yang Y. Predicting retrosynthetic reactions using self-corrected transformer neural networks. J Chem Inf Model 2020;60(1): 47‒55. link1

[20] Corey EJ, Cheng XM. The logic of chemical synthesis. New York City: Willey; 1991.

[21] Chen B, Li C, Dai H, Song L. Retro*: learning retrosynthetic planning with neural guided A* search. In: Proceedings of the 37th International Conference on Machine Learning; 2020 Jul 12‒18; online. 2020. p. 1608‒16.

[22] Segler MHS, Preuss M, Waller MP. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 2018;555(7698):604‒10. link1

[23] Sutskever I, Vinyals O, Le QV. Sequence to sequence learning with neural networks. In: Proceedings of the 28th Conference on Neural Information Processing Systems (NIPS 2014); 2014 Dec 8‒13; Montreal, QC, Canada. 2014. p. 3104‒12. link1

[24] Cho K, van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. 2014. arXiv:1406.1078. link1

[25] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. 2014. arXiv:1409.0473.

[26] Luong MT, Pham H, Manning CD. Effective approaches to attention-based neural machine translation. 2015. arXiv:1508.04025. link1

[27] Gehring J, Auli M, Grangier D, Yarats D, Dauphin YN. Convolutional sequence to sequence learning. In: Proceedings of the 34th International Conference on Machine Learning; 2017 Aug 6‒11; Sydney, NSW, Australia. 2017. p. 1243‒52. link1

[28] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. In: Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017); 2017 Dec 4‒9; Long Beach, CA, USA. 2017. p. 5998‒6008.

[29] Devlin J, Chang MW, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding. 2018. arXiv:1810.04805. link1

[30] Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I. Language models are unsupervised multitask learners. OpenAI blog; 2019.

[31] Gori M, Monfardini G, Scarselli F. A new model for learning in graph domains. In: Proceedings of the 2005 IEEE International Joint Conference on Neural Networks; 2005 Jul 31‒Aug 4; Montreal, QC, Canada. 2005. p. 729‒34. link1

[32] Sperduti A, Starita A. Supervised neural networks for the classification of structures. IEEE Trans Neural Netw 1997;8(3):714‒35. link1

[33] Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G. The graph neural network model. IEEE Trans Neural Netw 2009;20(1):61‒80. link1

[34] Gallicchio C, Micheli A. Graph echo state networks. In: Proceedings of the 2010 International Joint Conference on Neural Networks (IJCNN); 2010 Jul 18‒23; Barcelona, Spain. 2010. p. 2159‒66. link1

[35] Henaff M, Bruna J, LeCun Y. Deep convolutional networks on graphstructured data. 2015. arXiv:1506.05163.

[36] Shuman DI, Narang SK, Frossard P, Ortega A, Vandergheynst P. The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process Mag 2013;30(3):83‒98. link1

[37] Bruna J, Zaremba W, Szlam A, LeCun Y. Spectral networks and locally connected networks on graphs. 2013. arXiv:1312.6203.

[38] Micheli A. Neural network for graphs: a contextual constructive approach. IEEE Trans Neural Netw 2009;20(3):498‒511. link1

[39] Atwood J, Towsley D. Diffusion-convolutional neural networks. In: Proceedings of the 30th Conference on Neural Information Processing Systems (NIPS 2016); 2016 Dec 5‒10; Barcelona, Spain. 2016. p. 1993‒2001.

[40] Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. 2016. arXiv:1609.02907.

[41] Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y. Bengio Graph attention networks. 2017. arXiv:1710.10903.

[42] Li Y, Tarlow D, Brockschmidt M, Zemel R. Gated graph sequence neural networks. 2015. arXiv:1511.05493.

[43] Cao S, Lu W, Xu Q. Deep neural networks for learning graph representations. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence; 2016 Feb 12‒17; Phoenix, AZ, USA. 2016. p. 1145‒52. link1

[44] De Cao N, Kipf T. MolGAN: an implicit generative model for small molecular graphs. 2018. arXiv:1805.11973. link1

[45] Yan S, Xiong Y, Lin D. Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Thirty-second AAAI conference on artificial intelligence. 2018 Feb 2‒7; OrleansNew, LA, USA. 2018. p. 7444‒52. link1

[46] Pearl J. Heuristics: intelligent search strategies for computer problem solving. Upper Saddle River: Addison-Wesley Longman Publishing Co., Inc.; 1984.

[47] Reddy DR. Speech understanding systems: a summary of results of the fiveyear research effort. Report. Pittsburgh: Carnegie-Mellon University; 1977.

[48] Zeng W, Church RL. Finding shortest paths on real road networks: the case for A*. Int J Geogr Inf Sci 2009;23(4):531‒43. link1

[49] Coulom R. Efficient selectivity and backup operators in Monte‒Carlo Tree Search. In: Proceedings of the 5th International Conference on Computers and Games (CG 2006); 2006 May 29‒31; Turin, Italy. Berlin: Springer; 2007. p. 72‒83. link1

[50] Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016;529(7587):484‒9. link1

[51] Kaelbling LP, Littman ML, Moore AW. Reinforcement learning: a survey. J Artif Intell Res 1996;4:237‒85. link1

[52] Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, et al. Playing Atari with deep reinforcement learning. 2013. arXiv:1312.5602.

[53] Hessel M, Modayil J, Van Hasselt H, Schaul T, Ostrovski G, Dabney W, et al. Rainbow: combining improvements in deep reinforcement learning. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence; 2018 Feb 2‒7; OrleansNew, LA, USA. 2018. p. 3215‒22. link1

[54] Moerland TM, Broekens J, Plaat A, Jonker CM. Model-based reinforcement learning: a survey. 2020. arXiv:2006.16712.

[55] Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, et al. Continuous control with deep reinforcement learning. 2015. arXiv:1509.02971.

[56] Mnih V, Badia AP, Mirza M, Graves A, Lillicrap TP, Harley T, et al. Asynchronous methods for deep reinforcement learning. In: Proceedings of the 33rd International Conference on Machine Learning; 2016 Jun 20‒22; New York City, NY, USA. 2016. p. 1928‒37.

[57] Nair A, Pong V, Dalal M, Bahl S, Lin S, Levine S. Visual reinforcement learning with imagined goals. 2018. arXiv:1807.04742.

[58] Kulkarni TD, Narasimhan K, Saeedi A, Tenenbaum J. Hierarchical deep reinforcement learning: integrating temporal abstraction and intrinsic motivation. In: Proceedings of the 30th Conference on Neural Information Processing Systems (NIPS 2016); 2016 Dec 5‒10; Barcelona, Spain. 2016. p. 3675‒83.

[59] Horling B, Lesser V. A survey of multi-agent organizational paradigms. Knowl Eng Rev 2004;19(4):281‒316. link1

[60] Schrittwieser J, Antonoglou I, Hubert T, Simonyan K, Sifre L, Schmitt S, et al. Mastering Atari, Go, chess and shogi by planning with a learned model. Nature 2020;588(7839):604‒9. link1

[61] Akkaya I, Andrychowicz M, Chociej M, Litwin M, McGrew B, Petron A, et al. Solving Rubik’s cube with a robot hand. 2019. arXiv:1910.07113.

[62] Sallab AE, Abdou M, Perot E, Yogamani S. Deep reinforcement learning framework for autonomous driving. Electron Imaging 2017;2017 (19):70‒6. link1

[63] Jeon W, Kim D. Autonomous molecule generation using reinforcement learning and docking to develop potential novel inhibitors. Sci Rep 2020;10 (1):22104. link1

[64] Silver D, Singh S, Precup D, Sutton RS. Reward is enough. Artif Intell 2021;299:103535. link1

[65] Weininger D, Weininger A, Weininger JL. 2. SMILES. 2. Algorithm for generation of unique SMILES notation. J Chem Inf Comput Sci 1989;29(2):97‒101. link1

[66] Fraser J, Owen RJ, Morgan DD, Costas M, Morgan DR. Assessment of DNA and protein molecular fingerprinting methods for strain identification of Helicobacter pylori. In: Malfertheiner P, Ditschuneit H, editors. Helicobacter pylori, gastritis and peptic ulcer. Berlin: Springer; 1990. p. 23‒8. link1

[67] Cereto-Massagué A, Ojeda MJ, Valls C, Mulero M, Garcia-Vallvé S, Pujadas G. Molecular fingerprint similarity search in virtual screening. Methods 2015;71:58‒63. link1

[68] Morgan HL. The generation of a unique machine description for chemical structures—a technique developed at chemical abstracts service. J Chem Doc 1965;5(2):107‒13. link1

[69] Rogers D, Hahn M. Extended-connectivity fingerprints. J Chem Inf Model 2010;50(5):742‒54. link1

[70] Zagidullin B, Wang Z, Guan Y, Pitkänen E, Tang J. Comparative analysis of molecular fingerprints in prediction of drug combination effects. Brief Bioinforma 2021;22(6). bbab291. link1

[71] Kearnes S, McCloskey K, Berndl M, Pande V, Riley P. Molecular graph convolutions: moving beyond fingerprints. J Comput Aided Mol Des 2016;30(8):595‒608. link1

[72] Schwaller P, Probst D, Vaucher AC, Nair VH, Kreutter D, Laino T, et al. Mapping the space of chemical reactions using attention-based neural networks. Nat Mach Intell 2021;3(2):144‒52. link1

[73] Varnek A, Fourches D, Hoonakker F, Solov’ev VP. Substructural fragments: an universal language to encode reactions, molecular and supramolecular structures. J Comput Aided Mol Des 2005;19(9):693‒703. link1

[74] Nugmanov RI, Mukhametgaleev RN, Akhmetshin T, Gimadiev TR, Afonina VA, Madzhidov TI, et al. CGRtools: Python library for molecule, reaction, and condensed graph of reaction processing. J Chem Inf Model 2019;59(6):2516‒21. link1

[75] Fortunato ME, Coley CW, Barnes BC, Jensen KF. Data augmentation and pretraining for template-based retrosynthetic prediction in computer-aided synthesis planning. J Chem Inf Model 2020;60(7):3398‒407. link1

[76] Segler MHS, Waller MP. Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry 2017;23(25):5966‒71. link1

[77] Corey EJ, Jorgensen WL. Computer-assisted synthetic analysis. Synthetic strategies based on appendages and the use of reconnective transforms. J Am Chem Soc 1976;98(1):189‒203. link1

[78] Avramova S, Kochev N, Angelov P. RetroTransformDB: a dataset of generic transforms for retrosynthetic analysis. Data 2018;3(2):14. link1

[79] Hartenfeller M, Eberle M, Meier P, Nieto-Oberhuber C, Altmann KH, Schneider G, et al. A collection of robust organic synthesis reactions for in silico molecule design. J Chem Inf Model 2011;51(12):3093‒8. link1

[80] Gelernter H, Rose JR, Chen C. Building and refining a knowledge base for synthetic organic chemistry via the methodology of inductive and deductive machine learning. J Chem Inf Comput Sci 1990;30(4):492‒504. link1

[81] Satoh H, SOPHIAFunatsu K., a knowledge base-guided reaction prediction system—utilization of a knowledge base derived from a reaction database. J Chem Inf Comput Sci 1995;35(1):34‒44. link1

[82] Funatsu K. A novel approach to retrosynthetic analysis utilizing knowledge bases derived from reaction databases. In: Proceedings of the 9th International Conference on Knowledge-Based and Intelligent Information and Engineering Systems (KES 2005); 2005 Sep 14‒16; Melbourne, VIC, Australia. Berlin: Springer; 2005. p. 169‒75. link1

[83] Law J, Zsoldos Z, Simon A, Reid D, Liu Y, Khew SY, et al. Route Designer: a retrosynthetic analysis tool utilizing automated retrosynthetic rule generation. J Chem Inf Model 2009;49(3):593‒602. link1

[84] Coley CW, Green WH, Jensen KF. RDChiral: an RDKit wrapper for handling stereochemistry in retrosynthetic template extraction and application. J Chem Inf Model 2019;59(6):2529‒37.

[85] Landrum G. RDKit: open-source cheminformatics software [Internet]. RDKit; 2016 Aug 26 [cited 2021 Jun 24]. Available from: http://www.rdkit.org/. link1

[86] Szymkuć S, Badowski T, Grzybowski BA. Is organic chemistry really growing exponentially? Angew Chem Int Ed 2021;133(50):26430‒6. link1

[87] Gobbi A, Poppinger D. Genetic optimization of combinatorial libraries. Biotechnol Bioeng 1998;61(1):47‒54. link1

[88] Dice LR. Measures of the amount of ecologic association between species. Ecology 1945;26(3):297‒302. link1

[89] Tanimoto TT. An elementary mathematical theory of classification and prediction. Report. New York City: International Business Machines Corporation; 1958 Nov.

[90] Tversky A. Features of similarity. Psychol Rev 1977;84(4):327‒52. link1

[91] Bjerrum EJ, Thakkar A, Engkvist O. Artificial applicability labels for improving policies in retrosynthesis prediction. Mach Learn Sci Technol 2020;2(1):017001. link1

[92] Seidl P, Renz P, Dyubankova N, Neves P, Verhoeven J, Segler M, et al. Modern Hopfield networks for few- and zero-shot reaction template prediction. 2021. arXiv:2104.03279. link1

[93] Dai H, Dai B, Song L. Discriminative embeddings of latent variable models for structured data. In: Proceedings of the 33rd International Conference on Machine Learning; 2016 Jun 20‒22; New York City, NY, USA. 2016. p. 2702‒11.

[94] Schlichtkrull M, Kipf TN, Bloem P, van den Berg R, Titov I, Welling M. Modeling relational data with graph convolutional networks. In: Proceedings of the 15th European Semantic Web Conference (ESWC 2018); 2018 Jun 3‒7; Heraklion, Greece. Cham: Springer; 2018. p. 593‒607. link1

[95] Somnath VR, Bunne C, Coley CW, Krause A, Barzilay R. Learning graph models for retrosynthesis prediction. In: Proceedings of the 35th Conference on Neural Information Processing Systems (NeurIPS 2021); 2021 Dec 6‒14; online. 2021. p. 9405‒15.

[96] Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE. Neural message passing for quantum chemistry. In: Proceedings of the 34th International Conference on Machine Learning; 2017 Aug 6‒11; Sydney, NSW, Australia. 2017. p. 1263‒72.

[97] Sacha M, Błaż M, Byrski P, Dąbrowski-Tumański P, Chromiński M, Loska R, et al. Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. J Chem Inf Model 2021;61 (7):3273‒84. link1

[98] You J, Ying R, Ren X, Hamilton W, Leskovec J. GraphRNN: generating realistic graphs with deep auto-regressive models. In: Proceedings of the 35th International Conference on Machine Learning; 2018 Jul 10‒15; Stockholm, Sweden. 2018. p. 5708‒17.

[99] Schuster M, Paliwal KK. Bidirectional recurrent neural networks. IEEE Trans Signal Process 1997;45(11):2673‒81. link1

[100] Karpov P, Godin G, Tetko IV. A transformer model for retrosynthesis. In: Proceedings of the 28th International Conference on Artificial Neural Networks (ICANN 2019); 2019 Sep 17‒19; Munich, Germany. Cham: Springer; 2019. p. 817‒30. link1

[101] Sun R, Dai H, Li L, Kearnes S, Dai B. Towards understanding retrosynthesis by energy-based models. In: Proceedings of the 35th Conference on Neural Information Processing Systems (NeurIPS 2021); 2021 Dec 6‒14; online. 2021. p. 10186‒94.

[102] Dugundji J, Ugi I. An algebraic model of constitutional chemistry as a basis for chemical computer programs. In: Houk KN, Hunter CA, Krische MJ, Lehn JM, Ley SV, Olivucci M, editors. Computers in chemistry. Berlin: Springer; 1973. p. 19‒64. link1

[103] Kraut H, Eiblmaier J, Grethe G, Löw P, Matuszczyk H, Saller H. Algorithm for reaction classification. J Chem Inf Model 2013;53(11):2884‒95. link1

[104] Kotera M, Okuno Y, Hattori M, Goto S, Kanehisa M. Computational assignment of the EC numbers for genomic-scale analysis of enzymatic reactions. J Am Chem Soc 2004;126(50):16487‒98. link1

[105] NextMove Software [Internet]. Cambridge: NextMove Software; c2022 [cited 2021 Jun 24]. Available from: https://www.nextmovesoftware.com. link1

[106] Schneider N, Lowe DM, Sayle RA, Landrum GA. Development of a novel fingerprint for chemical reactions and its application to large-scale reaction classification and similarity. J Chem Inf Model 2015;55(1):39‒53. link1

[107] Ghiandoni GM, Bodkin MJ, Chen B, Hristozov D, Wallace JEA, Webster J, et al. Development and application of a data-driven reaction classification model: comparison of an electronic lab notebook and medicinal chemistry literature. J Chem Inf Model 2019;59(10):4167‒87. link1

[108] Coley CW, Rogers L, Green WH, Jensen KF. SCScore: synthetic complexity learned from a reaction corpus. J Chem Inf Model 2018;58(2):252‒61. link1

[109] Cadeddu A, Wylie EK, Jurczak J, Wampler-Doty M, Grzybowski BA. Organic chemistryas a languageandtheimplications ofchemical linguistics for structural and retrosynthetic analyses. Angew ChemInt Ed 2014;53(31):8108‒12. link1

[110] Skoraczyń ski G, Dittwald P, Miasojedow B, Szymkuć S, Gajewska EP, Grzybowski BA, et al. Predicting the outcomes of organic reactions via machine learning: are current descriptors sufficient? Sci Rep 2017;7:3582. link1

[111] Schwaller P, Vaucher AC, Laino T, Reymond JL. Prediction of chemical reaction yields using deep learning. Mach Learn Sci Technol 2021;2(1):015016. link1

[112] Heifets A, Jurisica I. Construction of new medicines via game proof search. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence; 2012 Jul 22‒26; Toronto, ON, Canada. Palo Alto: AAAI Press; 2012. p. 1564‒70. link1

[113] Schreck JS, Coley CW, Bishop KJM. Learning retrosynthetic planning through simulated experience. ACS Cent Sci 2019;5(6):970‒81. link1

[114] Kishimoto A, Buesser B, Chen B, Botea A. Depth-first proof-number search with heuristic edge cost and application to chemical synthesis planning. In: Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019); 2019 Dec 8‒14; Vancouver, BC, Canada. 2019. p. 7226‒36.

[115] Jeong J, Lee N, Shin Y, Shin D. Intelligent generation of optimal synthetic pathways based on knowledge graph inference and retrosynthetic predictions using reaction big data. J Taiwan Inst Chem Eng 2022;130:103982. link1

[116] Allis LV, van der Meulen M, van den Herik HJ. Proof-number search. Artif Intell 1994;66(1):91‒124. link1

[117] Lowe DM. Extraction of chemical structures and reactions from the literature [dissertation]. Cambridge: University of Cambridge; 2012.

[118] Schneider N, Stiefl N, Landrum GA. What’s what: the (nearly) definitive guide to reaction role assignment. J Chem Inf Model 2016;56(12):2336‒46. link1

[119] Lowe DM. Chemical reactions from US patents (1976‒Sep2016) [Internet]. Cambridge: Figshare; [cited 2021 Jun 24]. Available from: https://figshare. com/articles/dataset/Chemical_reactions_from_US_patents_1976-Sep2016_/ 5104873. link1

[120] Mo Y, Guan Y, Verma P, Guo J, Fortunato ME, Lu Z, et al. Evaluating and clustering retrosynthesis pathways with learned strategy. Chem Sci 2021;12 (4):1469‒78. link1

[121] Corey EJ, Cramer III RD, Howe WJ. Computer-assisted synthetic analysis for complex molecules. Methods and procedures for machine generation of synthetic intermediates. J Am Chem Soc 1972;94(2):440‒59. link1

[122] Corey EJ, Wipke WT, Cramer III RD, Howe WJ. Computer-assisted synthetic analysis. Facile man‒machine communication of chemical structure by interactive computer graphics. J Am Chem Soc 1972;94(2):421‒30. link1

[123] Wipke WT, Ouchi GI, Krishnan S. Simulation and evaluation of chemical synthesis—SECS: an application of artificial intelligence techniques. Artif Intell 1978;11(1‒2):173‒93.

[124] Klucznik T, Mikulak-Klucznik B, McCormack MP, Lima H, Szymkuć S, Bhowmick M, et al. Efficient syntheses of diverse, medicinally relevant targets planned by computer and executed in the laboratory. Chem 2018;4 (3):522‒32. link1

[125] Genheden S, Thakkar A, Chadimová V, Reymond JL, Engkvist O, Bjerrum E. AiZynthFinder: a fast, robust and flexible open-source software for retrosynthetic planning. J Cheminf 2020;12(1):70. link1

[126] Schwaller P, Laino T, Gaudin T, Bolgar P, Hunter CA, Bekas C, et al. Molecular Transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS Cent Sci 2019;5(9):1572‒83. link1

[127] Thakkar A, Kogej T, Reymond JL, Engkvist O, Bjerrum EJ. Datasets and their influence on the development of computer assisted synthesis planning tools in the pharmaceutical domain. Chem Sci 2020;11(1):154‒68. link1

[128] Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J. Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data; 2008 Jun 9‒12; Vancouver, BC, Canada. New York City: Association for Computing Machinery; 2008. p. 1247‒50. link1

[129] Carlson A, Betteridge J, Kisiel B, Settles B, Hruschka ER, Mitchell TM. Toward an architecture for never-ending language learning. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence; 2010 Jul 11‒15; Atlanta, GA, USA. AAAI; 2010. p. 1306‒13. link1

Related Research