Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2023, Volume 24, Issue 5 doi: 10.1016/j.eng.2022.04.030

From Discovery to Mass Production: A Perspective on Bio-Manufacturing Exemplified by the Development of Statins

a Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
b Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China

Received: 2021-08-24 Revised: 2022-02-20 Accepted: 2022-04-08 Available online: 2023-04-20

Next Previous

Abstract

The increasingly complex molecular structures and high requirements of advanced industries are triggering a transformation in chemical production modes. Bio-manufacturing provides efficient strategies and brings the advantages of high atomic economy, few side reactions, and strong adaptability to processes, as well as environmental friendliness, which can contribute toward global efforts against greenhouse effect and environmental pollution. The significance of bio-manufacturing can be specifically illustrated by examining the bio-manufacturing process from the scientific discovery of a key compound to its technological integration and engineering innovation. The development of statins—important drugs for hypercholesterolemia treatment—is a good example of the progress and application of bio-manufacturing. The production of the first-generation statins from microorganisms, the second-generation statins using bioconversion, and the third-generation statins through an evolution from total chemical synthesis to chemoenzymatic synthesis demonstrates the technological and engineering revolution of bio-manufacturing, which is of great importance for energy conservation, cost saving, and waste emission reduction. With advances in cutting-edge biotechnologies, as well as the integration of multiple disciplines, bio-manufacturing is expected to promote the advancement of more intelligent processes to realize sustainable and green industrial development.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

References

[ 1 ] Erythropel HC, Zimmerman JB, de Winter TM, Petitjean L, Melnikov F, Lam CH, et al. The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chem 2018;20(9):1929‒61. link1

[ 2 ] Zhang YHP, Sun J, Ma Y. Biomanufacturing: history and perspective. J Ind Microbiol Biotechnol 2017;44(4‒5):773‒84.

[ 3 ] Lv Y, Su H, Tan T. Editorial for special issue on green biomanufacturing. Synth Syst Biotechnol 2020;5(4):361‒2. link1

[ 4 ] Barreiro C, García-Estrada C. Proteomics and Penicillium chrysogenum: unveiling the secrets behind penicillin production. J Proteomics 2019;198:119‒31. link1

[ 5 ] Dzhafarov MK, Vasilevich FI, Mirzaev MN. Production of avermectins: biotechnologies and organic synthesis. Sel’skokhozyaistvennaya Biol 2019;54(2):199‒215. link1

[ 6 ] Chen X, Fan Y, Zheng Y, Shen Y. Properties and production of valienamine and its related analogues. Chem Rev 2003;103(5):1955‒78. link1

[ 7 ] Lu YL, Zhou Y, Li JF, Xu JJ, Bao YL, Chen XL. Research progress for preparation and purification of validoxylamine A. Agrochemicals 2017;56(6):395‒9. Chinese.

[ 8 ] Mitsuishi M, Cao J, Bártolo P, Friedrich D, Shih AJ, Rajurkar K, et al. Biomanufacturing. CIRP Ann 2013;62(2):585‒606. link1

[ 9 ] Barrios-González J, Miranda RU. Biotechnological production and applications of statins. Appl Microbiol Biotechnol 2010;85(4):869‒83. link1

[10] Endo A. A historical perspective on the discovery of statins. Proc Jpn Acad Ser B 2010;86(5):484‒93. link1

[11] Carbonell T, Freire E. Binding thermodynamics of statins to HMG-CoA reductase. Biochemistry 2005;44(35):11741‒8. link1

[12] Sarr FS, André C, Guillaume YC. Statins (HMG-coenzyme A reductase inhibitors)‒biomimetic membrane binding mechanism investigated by molecular chromatography. J Chromatogr B 2008;868(1‒2):20‒7. link1

[13] Endo A, Kuroda M, Tsujita Y. ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinium. J Antibiot 1976;29(12):1346‒8. link1

[14] Endo A. Compactin (ML-236B) and related compounds as potential cholesterol-lowering agents that inhibit HMG-CoA reductase. J Med Chem 1985;28(4):401‒5. link1

[15] Endo A, Tsujita Y, Kuroda M, Tanzawa K. Effects of ML-236B on cholesterol metabolism in mice and rats: lack of hypocholesterolemic activity in normal animals. Biochim Biophys Acta 1979;575(2):266‒76. link1

[16] Yamamoto A, Sudo H, Endo A. Therapeutic effects of ML-236B in primary hypercholesterolemia. Atherosclerosis 1980;35(3):259‒66. link1

[17] Endo A. Monacolin K, a new hypocholesterolemic agent produced by a Monascus species. J Antibiot 1979;32(8):852‒4. link1

[18] Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffman C, et al. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci USA 1980;77(7):3957‒61. link1

[19] Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis (Nobel lecture). Angew Chem Int Ed Engl 1986;25(7):583‒602. link1

[20] Barrios-González J, Pérez-Sánchez A, Bibián ME. New knowledge about the biosynthesis of lovastatin and its production by fermentation of Aspergillus terreus. Appl Microbiol Biotechnol 2020;104(21):8979‒98. link1

[21] Chen CH, Hu HY, Cho YC, Hsu WH. Screening of compactin-resistant microorganisms capable of converting compactin to pravastatin. Curr Microbiol 2006;53(2):108‒12. link1

[22] Manzoni M, Rollini M. Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl Microbiol Biotechnol 2002;58(5):555‒64. link1

[23] Syed MB, Rajasimman M. Fermentative production and optimization of mevastatin in submerged fermentation using Aspergillus terreus. Biotechnol Rep 2015;6:124‒8. link1

[24] Zaffer Ahamad M, Panda BP, Javed S, Ali M. Production of mevastatin by solid-state fermentation using wheat bran as substrate. Res J Microbiol 2006;1(5):443‒7. link1

[25] Coton M, Hymery N, Piqueras J, Poirier E, Mounier J, Coton E, et al. Monascus spp. used in wheat kernel solid-state fermentations: growth, extrolite production and citrinin cytotoxicity. World Mycotoxin J 2019;12(3):223‒32. link1

[26] Javed S, Bukhari SA, Ali M, Sajjad-ur-Rehman. Estimation of antifungal activity of mevastatin produced by Aspergillus terreus GCBL-03 on pretreated substrate in solid state fermentation. Curr Pharm Biotechnol 2016;17(3):291‒8. link1

[27] Wang TH, Lin TF. Monascus rice products. Adv Food Nutr Res 2007;53:123‒59. link1

[28] Lin YL, Wang TH, Lee MH, Su NW. Biologically active components and nutraceuticals in the Monascus-fermented rice: a review. Appl Microbiol Biotechnol 2008;77(5):965‒73. link1

[29] Ghosh S, Dam B. Genome shuffling improves pigment and other bioactive compound production in Monascus purpureus. Appl Microbiol Biotechnol 2020;104(24):10451‒63. link1

[30] Feng Y, Chen W, Chen F. A Monascus pilosus MS-1 strain with high-yield monacolin K but no citrinin. Food Sci Biotechnol 2016;25(4):1115‒22. link1

[31] Lee CL, Hung HK, Wang JJ, Pan TM. Red mold dioscorea has greater hypolipidemic and antiatherosclerotic effect than traditional red mold rice and unfermented dioscorea in hamsters. J Agric Food Chem 2007;55(17):7162‒9. link1

[32] Subhan M, Faryal R, Macreadie I. Exploitation of Aspergillus terreus for the production of natural statins. J Fungi 2016;2(2):13. link1

[33] Vilches Ferrón MA, Casas López JL, Sánchez Pérez JA, Fernández Sevilla JM, Chisti Y. Rapid screening of Aspergillus terreus mutants for overproduction of lovastatin. World J Microbiol Biotechnol 2005;21(2):123‒5. link1

[34] Vinci VA, Hoerner TD, Coffman AD, Schimmel TG, Dabora RL, Kirpekar AC, et al. Mutants of a lovastatin-hyperproducing Aspergillus terreus deficient in the production of sulochrin. J Ind Microbiol 1991;8:113‒9. link1

[35] Jia Z, Zhang X, Zhao Y, Cao X. Enhancement of lovastatin production by supplementing polyketide antibiotics to the submerged culture of Aspergillus terreus. Appl Biochem Biotechnol 2010;160(7):2014‒25. link1

[36] Mukhtar H, Ijaz SS, Ikram-ul-Haq. Upstream and downstream processing of lovastatin by Aspergillus terreus. Cell Biochem Biophys 2014;70(1):309‒20. link1

[37] Sreedevi K, Venkateswara R, Lakshmi NJ, Fareedullah MD. Strain improvement of Aspergillus terreus for the enhanced production of lovastatin, a HMG-CoA reductase inhibitor. J Microbiol Biotechnol Res 2011;1(2):96‒100.

[38] Hasan H, Abd Rahim MH, Campbell L, Carter D, Abbas A, Montoya A. Overexpression of acetyl-CoA carboxylase in Aspergillus terreus to increase lovastatin production. New Biotechnol 2018;44:64‒71. link1

[39] Hasan H, Abd Rahim MH, Campbell L, Carter D, Abbas A, Montoya A. Improved lovastatin production by inhibiting (+)-geodin biosynthesis in Aspergillus terreus. New Biotechnol 2019;52:19‒24. link1

[40] Askenazi M, Driggers EM, Holtzman DA, Norman TC, Iverson S, Zimmer DP, et al. Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nat Biotechnol 2003;21(2):150‒6. link1

[41] Mulder KC, Mulinari F, Franco OL, Soares MSF, Magalhães BS, Parachin NS. Lovastatin production: from molecular basis to industrial process optimization. Biotechnol Adv 2015;33(6 Pt 1):648‒65.

[42] Boruta T, Bizukojc M. Production of lovastatin and itaconic acid by Aspergillus terreus: a comparative perspective. World J Microbiol Biotechnol 2017;33(2):34. link1

[43] Ansari S, Jalili H, Bizukojc M, Amrane A. Influence of the construction of porous spargers on lovastatin production by Aspergillus terreus ATCC 20,542 in a laboratory bubble column. Bioprocess Biosyst Eng 2019;42(7):1205‒13. link1

[44] Raina S, De Vizio D, Palonen EK, Odell M, Brandt AM, Soini JT, et al. Is quorum sensing involved in lovastatin production in the filamentous fungus Aspergillus terreus? Process Biochem 2012;47(5):843‒52. link1

[45] Park JW, Lee JK, Kwon TJ, Yi DH, Kim YJ, Moon SH, et al. Bioconversion of compactin into pravastatin by Streptomyces sp. Biotechnol Lett 2003;25(21):1827‒31. link1

[46] Endo A. The discovery and development of HMG-CoA reductase inhibitors. J Lipid Res 1992;33(11):1569‒82. link1

[47] Yamashita H, Tsubokawa S, Endo A. Microbial hydroxylation of compactin (ML-236B) and monacolin K. J Antibiot 1985;38(5):605‒9. link1

[48] Serizawa N. Biochemical and molecular approaches for production of pravastatin, a potent cholesterol-lowering drug. Biotechnol Annu Rev 1996;2:373‒89. link1

[49] Ahmad A, Mujeeb M, Kapoor R, Panda B. In situ bioconversion of compactin to pravastatin by Actinomadura species in fermentation broth of Penicillium citrinum. Chem Pap 2013;67(6):667‒71. link1

[50] Mei MQ, Ji XM, Gao XL, Chen Y, Li Y, Yao Y, et al., inventors; Shanghai Techwell Biopharmaceutical Co., Ltd., assignee. Microorganism and the process for preparation of pravastatin sodium. United States patent US 7582464. 2009 Sep 1.

[51] Ahmad A, Panda BP, Mujeeb M. Screening of nutrient parameters for mevastatin production by Penicillium citrinum MTCC 1256 under submerged fermentation using the Plackett‒Burman design. J Pharm Bioallied Sci 2010;2(1):44‒6. link1

[52] Dzhavakhiya VV, Voinova TM, Glagoleva EV, Petukhov DV, Ovchinnikov AI, Kartashov MI, et al. Strain improvement of Streptomyces xanthochromogenes RIA 1098 for enhanced pravastatin production at high compactin concentrations. Indian J Microbiol 2015;55(4):440‒6. link1

[53] Peng Y, Yashphe J, Demain AL. Biotransformation of compactin to pravastatin by Actinomadura sp. 2966. J Antibiot 1997;50(12):1032‒5. link1

[54] Zhong X, Qian J, Guo H, Hu Y, Liu M. Biosynthesis of sucrose-6-acetate catalyzed by surfactant-coated Candida rugosa lipase immobilized on sol‒gel supports. Bioprocess Biosyst Eng 2014;37(5):813‒8. link1

[55] McLean KJ, Hans M, Meijrink B, van Scheppingen WB, Vollebregt A, Tee KL, et al. Single-step fermentative production of the cholesterol-lowering drug pravastatin via reprogramming of Penicillium chrysogenum. Proc Natl Acad Sci USA 2015;112(9):2847‒52. link1

[56] Ito S, Matsuoka T, Watanabe I, Kagasaki T, Serizawa N, Hata T. Crystallization and preliminary X-ray diffraction analysis of cytochrome P450sca-2 from Streptomyces carbophilus involved in production of pravastatin sodium, a tissue-selective inhibitor of HMG-CoA reductase. Acta Crystallogr D 1999;55(6):1209‒11. link1

[57] Sleteinger M, Verhoeven TR, Volante RP, inventors; Merck and Co., Inc., assignee. Process for C-methylation of 2-methylbutyrates. United States patent US 4582915A. 1986 Apr 15.

[58] Askin D, Verhoeven TR, Liu TMH, Shinkai I. Synthesis of synvinolin: extremely high conversion alkylation of an ester enolate. J Org Chem 1991;56(16):4929‒32. link1

[59] Dabak K, Adiyaman M. A new method for the synthesis of antihypercholesterolemic agent simvastatin. Helv Chim Acta 2003;86(3):673‒7. link1

[60] Hoffman WF, Smith RL, Willard AK, inventors; MSD Technology, L.P., Merck Capital Resources, Inc., assignees. Antihypercholesterolemic compounds. United States patent US 4444784A. 1984 Apr 24.

[61] Verhoeven TR, Askin D, inventors; Technology L.P.MSD, assignee. Process for α-C-alkylation of the 8-acyl group on mevinolin and analogs thereof. United States patent US 4820850A. 1989 Apr 11.

[62] Kumar Y, Thaper RK, Misra S, Kumar SMD, Khanna JM, inventors; Sun Pharmaceutical Industries, Ltd., assignee. Process for manufacturing simvastatin from lovastatin or mevinolinic acid. United States patent US 5763646A. 1998 Jun 9.

[63] Joshi NS, Bhirud S, Rao K, inventors; PharmaceuticalsGlenmark, Ltd., assignee. Process for the preparation of simvastatin. United States patent US 20050239885A1. 2005 Oct 27.

[64] Xie X, Tang Y. Efficient synthesis of simvastatin by use of whole-cell biocatalysis. Appl Environ Microbiol 2007;73(7):2054‒60. link1

[65] Sorensen JL, Auclair K, Kennedy J, Hutchinson CR, Vederas JC. Transformations of cyclic nonaketides by Aspergillus terreus mutants blocked for lovastatin biosynthesis at the lovA and lovC genes. Org Biomol Chem 2003;1(1):50‒9. link1

[66] Gao X, Xie X, Pashkov I, Sawaya MR, Laidman J, Zhang W, et al. Directed evolution and structural characterization of a simvastatin synthase. Chem Biol 2009;16(10):1064‒74. link1

[67] Hutchinson CR, Kennedy J, Park C, Kendrew S, Auclair K, Vederas J. Aspects of the biosynthesis of non-aromatic fungal polyketides by iterative polyketide synthases. Anton Leeuw 2000;78(3):287‒95. link1

[68] Xie X, Watanabe K, Wojcicki WA, Wang CCC, Tang Y. Biosynthesis of lovastatin analogs with a broadly specific acyltransferase. Chem Biol 2006;13(11):1161‒9. link1

[69] Huang X, Liang Y, Yang Y, Lu X. Single-step production of the simvastatin precursor monacolin J by engineering of an industrial strain of Aspergillus terreus. Metab Eng 2017;42:109‒14. link1

[70] Morgan B, Burk M, Levin M, Zhu ZL, Chaplin J, Kustedjo K, et al., inventors; BASF Enzymes LLC, assignee. Methods for making simvastatin and intermediates. United States patent US 7700329B2. 2010 Apr 20.

[71] Liang B, Huang X, Teng Y, Liang Y, Yang Y, Zheng L, et al. Enhanced single-step bioproduction of the simvastatin precursor monacolin J in an industrial strain of Aspergillus terreus by employing the evolved lovastatin hydrolase. Biotechnol J 2018;13(6):1800094.

[72] Liang Y, Lu X. Structural insights into the catalytic mechanism of lovastatin hydrolase. J Biol Chem 2020;295(4):1047‒55. link1

[73] Xie X, Pashkov I, Gao X, Guerrero JL, Yeates TO, Tang Y. Rational improvement of simvastatin synthase solubility in Escherichia coli leads to higher whole-cell biocatalytic activity. Biotechnol Bioeng 2009;102(1):20‒8. link1

[74] Jiménez-Osés G, Osuna S, Gao X, Sawaya MR, Gilson L, Collier SJ, et al. The role of distant mutations and allosteric regulation on LovD active site dynamics. Nat Chem Biol 2014;10(6):431‒6. link1

[75] Wolberg M, Filho MV, Bode S, Geilenkirchen P, Feldmann R, Liese A, et al. Chemoenzymatic synthesis of the chiral side-chain of statins: application of an alcohol dehydrogenase catalysed ketone reduction on a large scale. Bioprocess Biosyst Eng 2008;31(3):183‒91. link1

[76] Lv SX, Guo YH, Wang YP, Wang XJ, Xiang WS. Synthesis of (R)-4-cyano-3-hydroxybutyric acid ethyl ester. Chin J Org Chem 2009;29(12):1997‒9. Chinese.

[77] Kumar Y, Kumar SMD, Sathyanarayana S, inventors; LaboratoriesRanbaxy, Ltd., assignee. Process for the production of atorvastatin calcium in amorphous form. United States patent US 20090216029A1. 2009 Aug 27.

[78] Wang ZL, Ying J, Lin SC, Yao ZY, Deng WP, Du WT. Progress in synthesis of atorvastatin calcium. Chin J Mod Appl Pharm 2011;28(5):423‒8. Chinese.

[79] Zheng YG, Yin HH, Yu DF, Chen X, Tang XL, Zhang XJ, et al. Recent advances in biotechnological applications of alcohol dehydrogenases. Appl Microbiol Biotechnol 2017;101(3):987‒1001. link1

[80] Hasnaoui-Dijoux G, Majeric´ Elenkov M, Lutje Spelberg JH, Hauer B, Janssen DB. Catalytic promiscuity of halohydrin dehalogenase and its application in enantioselective epoxide ring opening. Chembiochem 2008;9(7):1048‒51. link1

[81] Liu ZQ, Ye JJ, Shen ZY, Hong HB, Yan JB, Lin Y, et al. Upscale production of ethyl (S)-4-chloro-3-hydroxybutanoate by using carbonyl reductase coupled with glucose dehydrogenase in aqueous-organic solvent system. Appl Microbiol Biotechnol 2015;99(5):2119‒29. link1

[82] Wan NW, Liu ZQ, Xue F, Shen ZY, Zheng YG. A one-step biocatalytic process for (S)-4-chloro-3-hydroxybutyronitrile using halohydrin dehalogenase: a chiral building block for atorvastatin. ChemCatChem 2015;7(16):2446‒50. link1

[83] Wang YJ, Shen W, Luo X, Liu ZQ, Zheng YG. Enhanced diastereoselective synthesis of t-butyl 6-cyano-(3R,5R)-dihydroxyhexanoate by using aldo-keto reductase and glucose dehydrogenase co-producing engineered Escherichia coli. Biotechnol Prog 2017;33(5):1235‒42. link1

[84] Li X, Ma M, Xin X, Tang Y, Zhao G, Xiao X. Efficient acylation of gastrodin by Aspergillus oryzae whole-cells in non-aqueous media. RSC Adv 2019;9(29):16701‒12. link1

[85] Barbas III CF, Wang YF, Wong CH. Deoxyribose-5-phosphate aldolase as a synthetic catalyst. J Am Chem Soc 1990;112(5):2013‒204. link1

[86] Ošlaj M, Cluzeau J, Orkić D, Kopitar G, Mrak P, Časar Z. A highly productive, whole-cell DERA chemoenzymatic process for production of key lactonized side-chain intermediates in statin synthesis. PLoS One 2013;8(5):e62250. link1

[87] Kim YM, Choi NS, Kim YO, Son DH, Chang YH, Song JJ, et al. Expression and characterization of a novel deoxyribose 5-phosphate aldolase from Paenibacillus sp. EA001. J Microbiol Biotechnol 2010;20(6):995‒1000. link1

[88] Kim YM, Chang YH, Choi NS, Kim Y, Song JJ, Kim JS. Cloning, expression, and characterization of a new deoxyribose 5-phosphate aldolase from Yersinia sp. EA015. Protein Expr Purif 2009;68(2):196‒200. link1

[89] Han TK, Zhu Z, Dao ML. Identification, molecular cloning, and sequence analysis of a deoxyribose aldolase in Streptococcus mutans GS-5. Curr Microbiol 2004;48(3):230‒6. link1

[90] Yin XP, Wang QY, Zhao SJ, Du PF, Xie KL, Jin P, et al. Cloning and characterization of a thermostable 2-deoxy-D-ribose-5-phosphate aldolase from Aciduliprofundum boonei. Afr J Biotechnol 2011;10(72):16260‒6. link1

[91] Lokanath NK, Shiromizu I, Ohshima N, Nodake Y, Sugahara M, Yokoyama S, et al. Structure of aldolase from Thermus thermophilus HB8 showing the contribution of oligomeric state to thermostability. Acta Crystallogr D 2004;60(10):1816‒23. link1

[92] You ZY, Liu ZQ, Zheng YG, Shen YC. Characterization and application of a newly synthesized 2-deoxyribose-5-phosphate aldolase. J Ind Microbiol Biotechnol 2013;40(1):29‒39. link1

[93] Wan NW, Liu ZQ, Xue F, Huang K, Tang LJ, Zheng YG. An efficient high-throughput screening assay for rapid directed evolution of halohydrin dehalogenase for preparation of β-substituted alcohols. Appl Microbiol Biotechnol 2015;99(9):4019‒29. link1

[94] Liu ZQ, Zheng YG, Wan NW, Shen YC, inventors; Zhejiang University of Technology, assignee. [Mutants of haloalcohol dehalogenase from Agrobacterium radiobacter and their application]. Chinese patent CN 104745557B. 2015 Jul 1. Chinese.

[95] Zhang XJ, Deng HZ, Liu N, Gong YC, Liu ZQ, Zheng YG. Molecular modification of a halohydrin dehalogenase for kinetic regulation to synthesize optically pure (S)-epichlorohydrin. Bioresour Technol 2019;276:154‒60. link1

[96] Luo Y, Chen Y, Ma H, Tian Z, Zhang Y, Zhang J. Enhancing the biocatalytic manufacture of the key intermediate of atorvastatin by focused directed evolution of halohydrin dehalogenase. Sci Rep 2017;7(1):42064. link1

[97] Qin YL, Ruan T, Hou HS, Hou YL, Yang ZH, Quan C. A novel thermal stable carbonyl reductase from Bacillus cereus by gene mining as biocatalyst for β-carbonyl ester asymmetric reduction reaction. Catal Lett 2019;149(2):610‒8. link1

[98] Liu ZQ, Yin HH, Zhang XJ, Zhou R, Wang YM, Zheng YG. Improvement of carbonyl reductase activity for the bioproduction of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate. Bioorg Chem 2018;80:733‒40. link1

[99] Yu H, Qiu S, Cheng F, Cheng YN, Wang YJ, Zheng YG. Improving the catalytic efficiency of aldo-keto reductase KmAKR towards t-butyl 6-cyano-(3R,5R)-dihydroxyhexanoate via semi-rational design. Bioorg Chem 2019;90:103018. link1

[100] Luo X, Wang YJ, Shen W, Zheng YG. Activity improvement of a Kluyveromyces lactis aldo-keto reductase KlAKR via rational design. J Biotechnol 2016;224:20‒6. link1

[101] Shen W, Chen Y, Qiu S, Wang DN, Wang YJ, Zheng YG. Semi-rational engineering of a Kluyveromyces lactis aldo-keto reductase KlAKR for improved catalytic efficiency towards t-butyl 6-cyano-(3R,5R)-dihydroxyhexanoate. Enzyme Microb Technol 2020;132:109413. link1

[102] You ZY, Liu ZQ, Zheng YG. Characterization of a newly synthesized carbonyl reductase and construction of a biocatalytic process for the synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate with high space‒time yield. Appl Microbiol Biotechnol 2014;98(4):1671‒80. link1

[103] Li X, Luo YD, Pan DR, Shi XD, Tan YL, Li ZH. Effect of Zn2+ on halohydrin dehalogenase expression and accumulation through multi-parameter correlation research with Escherichia coli P84A/MC1061. Bioengineered 2017;8(5):585‒93. link1

[104] Liu ZQ, Hu ZL, Zhang XJ, Tang XL, Cheng F, Xue YP, et al. Large-scale synthesis of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate by a stereoselective carbonyl reductase with high substrate concentration and product yield. Biotechnol Prog 2017;33(3):612‒20. link1

[105] Zhang XJ, Zheng L, Wu D, Zhou R, Liu ZQ, Zheng YG. Production of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate using carbonyl reductase coupled with glucose dehydrogenase with high space‒time yield. Biotechnol Prog 2020;36(1):e2900. link1

[106] Xue F, Liu ZQ, Wang YJ, Wan NW, Zheng YG. Biochemical characterization and biosynthetic application of a halohydrin dehalogenase from Tistrella mobilis ZJB1405. J Mol Catal B 2015;115:105‒12. link1

[107] Wan NW, Liu ZQ, Huang K, Shen ZY, Xue F, Zheng YG, et al. Synthesis of ethyl (R)-4-cyano-3-hydroxybutyrate in high concentration using a novel halohydrin dehalogenase HHDH-PL from Parvibaculum lavamentivorans DS-1. RSC Adv 2014;4(109):64027‒31. link1

[108] Giver LJ, Newman LM, Mundorff E, Huisman GW, Jenne SJ, Zhu J, et al., inventors; Codexis, Inc., assignee. Compositions and methods for producing stereoisomerically pure statins and synthetic intermediates therefor. United States patent US 20110195465. 2011 Aug 11.

[109] Giver LJ, Newman LM, Mundorff E, Huisman GW, Jenne SJ, Zhu J, et al., inventors; Codexis, Inc., assignee. Polynucleotides encoding ketoreductases for producing stereoisomerically pure statins and synthetic intermediates therefor. United States patent US 20130040364. 2013 Feb 14.

[110] Giver LJ, Newman LM, Mundorff E, Huisman GW, Jenne SJ, Zhu J, et al., inventors; Codexis, Inc., assignee. Compositions and methods for producing stereoisomerically pure statins and synthetic intermediates therefor. United States patent US 20080248539. 2008 Oct 9.

[111] Wang YJ, Chen XP, Shen W, Liu ZQ, Zheng YG. Chiral diol t-butyl 6-cyano-(3R,5R)-dihydroxylhexanoate synthesis catalyzed by immobilized cells of carbonyl reductase and glucose dehydrogenase co-expression E. coli. Biochem Eng J 2017;128:54‒62. link1

[112] Qiu S, Wang YJ, Yu H, Cheng F, Zheng YG. t-Butyl 6-cyano-(3R,5R)-dihydroxyhexanoate synthesis via asymmetric reduction by immobilized cells of carbonyl reductase and glucose dehydrogenase co-expression E. coli. Process Biochem 2019;80:43‒51. link1

[113] Liu ZQ, Zheng YG, Zhang XJ, Yao DK, Wang YJ, Zheng L, et al., inventors; Zhejiang University of Technology, assignee. [Immobilization of carbonyl reductase cells by genetically engineered bacteria and its application]. Chinese patent CN 107653238A. 2018 Feb 2. Chinese.

[114] Zhang XJ, Wang WZ, Zhou R, Liu ZQ, Zheng YG. Asymmetric synthesis of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate using a self-sufficient biocatalyst based on carbonyl reductase and cofactor co-immobilization. Bioprocess Biosyst Eng 2020;43(1):21‒31. link1

[115] Liu ZQ, Zhang XJ, Zheng YG, Wang WZ, Wu D, inventors; Zhejiang University of Technology, assignee. [Preparation and application of carbonyl reductase-coenzyme NADP+ co-immobilized enzyme]. Chinese patent CN 110423741A. 2019 Nov 8. Chinese.

[116] Zhou KL, Liu H, Chen ZR, Hong HB, Sun Y, Wang YD, et al., inventors; Zhejiang Lepu Pharmaceutical Co., Ltd., assignee. [Preparation method of high purity crystalline atorvastatin sodium]. Chinese patent CN 100503564. 2009 Jun 24. Chinese.

[117] Zhou JW, Yang DW, inventors; Zhejiang Lepu Pharmaceutical Co., Ltd., assignee. [Method for refining atorvastatin intermediate]. Chinese patent CN 101205209B. 2010 Jun 2. Chinese.

[118] Zhou KL, Liu H, Chen ZR, Hong HB, Sun Y, Wang YD, et al., inventors; Zhejiang Lepu Pharmaceutical Co., Ltd., assignee. [Preparation method of high purity atorvastatin calcium]. Chinese patent CN 100484920. 2009 May6. Chinese.

[119] Rosenthal K, Lütz S. Recent developments and challenges of biocatalytic processes in the pharmaceutical industry. Curr Opin Green Sustainable Chem 2018;11:58‒64. link1

[120] Hoyos P, Pace V, Alcántara A. Biocatalyzed synthesis of statins: a sustainable strategy for the preparation of valuable drugs. Catalysts 2019;9(3):260. link1

[121] Wang T, Guan C, Guo J, Liu B, Wu Y, Xie Z, et al. Pooled CRISPR interference screening enables genome-scale functional genomics study in bacteria with superior performance. Nat Commun 2018;9(1):2475. link1

[122] Mo XH, Zhang H, Wang TM, Zhang C, Zhang C, Xing XH, et al. Establishment of CRISPR interference in Methylorubrum extorquens and application of rapidly mining a new phytoene desaturase involved in carotenoid biosynthesis. Appl Microbiol Biotechnol 2020;104(10):4515‒32. link1

[123] Jian X, Guo X, Wang J, Tan ZL, Xing XH, Wang L, et al. Microbial microdroplet culture system (MMC): an integrated platform for automated, high-throughput microbial cultivation and adaptive evolution. Biotechnol Bioeng 2020;117(6):1724‒37. link1

[124] Ma C, Tan ZL, Lin Y, Han S, Xing X, Zhang C. Gel microdroplet-based high-throughput screening for directed evolution of xylanase-producing Pichia pastoris. J Biosci Bioeng 2019;128(6):662‒8. link1

[125] Feng H, Yuan Y, Yang Z, Xing XH, Zhang C. Genome-wide genotype-phenotype associations in microbes. J Biosci Bioeng 2021;132(1):1‒8. link1

[126] Cui Y, Wang Y, Tian W, Bu Y, Li T, Cui X, et al. Development of a versatile and efficient C‒N lyase platform for asymmetric hydroamination via computational enzyme redesign. Nat Catal 2021;4(5):364‒73. link1

Related Research