Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2015, Volume 1, Issue 1 doi: 10.15302/J-ENG-2015005

Magnetic Helical Micro- and Nanorobots: Toward Their Biomedical Applications

Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich CH-8092, Switzerland

Received: 2015-02-13 Revised: 2015-03-16 Accepted: 2015-03-25 Available online: 2015-03-31

Next Previous

Abstract

Magnetic helical micro- and nanorobots can perform 3D navigation in various liquids with a sub-micrometer precision under low-strength rotating magnetic fields (<10 mT). Since magnetic fields with low strengths are harmless to cells and tissues, magnetic helical micro/nanorobots are promising tools for biomedical applications, such as minimally invasive surgery, cell manipulation and analysis, and targeted therapy. This review provides general information on magnetic helical micro/nanorobots, including their fabrication, motion control, and further functionalization for biomedical applications.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

References

[ 1 ] B. J. Nelson, I. K. Kaliakatsos, J. J. Abbott. Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng., 2010, 12(1): 55–85 link1

[ 2 ] W. Gao, J. Wang. The environmental impact of micro/nanomachines: A review. ACS Nano, 2014, 8(4): 3170–3180 link1

[ 3 ] L. Zhang, K. E. Peyer, B. J. Nelson. Artificial bacterial flagella for micromanipulation. Lab Chip, 2010, 10(17): 2203–2215 link1

[ 4 ] J. J. Abbott, How should microrobots swim? Int. J. Robot. Res., 2009, 28(11−12): 1434–1447

[ 5 ] E. M. Purcell. Life at low Reynolds number. Am. J. Phys., 1977, 45(1): 3–11

[ 6 ] H. C. Berg, R. A. Anderson. Bacteria swim by rotating their flagellar filaments. Nature, 1973, 245(5425): 380–382 link1

[ 7 ] T. Baba, Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection. Mol. Syst. Biol. 2006, 2(1): 2006.0008

[ 8 ] W. R. DiLuzio, Escherichia coli swim on the right-hand side. Nature, 2005, 435(7046): 1271–1274 link1

[ 9 ] K. E. Peyer, S. Tottori, F. Qiu, L. Zhang, B. J. Nelson. Magnetic helical micromachines. Chemi. Eur. J., 2013, 19(1): 28–38

[10] K. E. Peyer, L. Zhang, B. J. Nelson. Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale, 2013, 5(4): 1259–1272 link1

[11] T. Honda, K. I. Arai, K. Ishiyama. Micro swimming mechanisms propelled by external magnetic fields. IEEE Trans. Magn., 1996, 32(5): 5085–5087 link1

[12] K. Kikuchi, A. Yamazaki, M. Sendoh, K. Ishiyama, K. I. Arai. Fabrication of a spiral type magnetic micromachine for trailing a wire. IEEE Trans. Magn., 2005, 41(10): 4012–4014 link1

[13] D. J. Bell, S. Leutenegger, K. M. Hammar, L. X. Dong, B. J. Nelson. Flagella-like propulsion for microrobots using a nanocoil and a rotating electromagnetic field. In: Proceedings of IEEE International Conference on Robotics and Automation, 2007: 1128–1133

[14] A. Ghosh, P. Fischer. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett., 2009, 9(6): 2243–2245 link1

[15] S. Tottori, L. Zhang, F. Qiu, K. K. Krawczyk, A. Franco-Obregón, B. J. Nelson. Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport. Adv. Mater., 2012, 24(6): 811–816 link1

[16] W. Gao, Bioinspired helical microswimmers based on vascular plants. Nano Lett., 2014, 14(1): 305–310 link1

[17] P. L. Venugopalan, R. Sai, Y. Chandorkar, B. Basu, S. Shivashankar, A. Ghosh. Conformal cytocompatible ferrite coatings facilitate the realization of a nanovoyager in human blood. Nano Lett., 2014, 14(4): 1968–1975 link1

[18] L. Zhang, Characterizing the swimming properties of artificial bacterial flagella. Nano Lett., 2009, 9(10): 3663–3667 link1

[19] B. J. Nelson, K. E. Peyer. Micro- and nanorobots swimming in heterogeneous liquids. ACS Nano, 2014, 8(9): 8718–8724 link1

[20] F. Qiu, Noncytotoxic artificial bacterial flagella fabricated from biocompatible ORMOCOMP and iron coating. J. Mater. Chem. B, 2014, 2(4): 357–362

[21] J. Li, Template electrosynthesis of tailored-made helical nanoswimmers. Nanoscale, 2014, 6(16): 9415–9420 link1

[22] D. Schamel, Nanopropellers and their actuation in complex viscoelastic media. ACS Nano, 2014, 8(9): 8794–8801 link1

[23] S. Schuerle, S. Pané, E. Pellicer, J. Sort, M. D. Baró, B. J. Nelson. Helical and tubular lipid microstructures that are electroless-coated with CoNiReP for wireless magnetic manipulation. Small, 2012, 8(10): 1498–1502 link1

[24] S. Kawata, H. B. Sun, T. Tanaka, K. Takada. Finer features for functional microdevices—Micromachines can be created with higher resolution using two-photon absorption. Nature, 2001, 412(6848): 697–698 link1

[25] M. Suter, Superparamagnetic microrobots: Fabrication by two-photon polymerization and biocompatibility. Biomed. Microdevices, 2013, 15(6): 997–1003 link1

[26] M. A. Zeeshan, Hybrid helical magnetic microrobots obtained by 3D template-assisted electrodeposition. Small, 2014, 10(7): 1284–1288 link1

[27] T. Y. Huang, Cooperative manipulation and transport of microobjects using multiple helical microcarriers. RSC Adv., 2014, 4(51): 26771–26776 link1

[28] F. Qiu, R. Mhanna, L. Zhang, Y. Ding, S. Fujita, B. J. Nelson. Artificial bacterial flagella functionalized with temperature-sensitive liposomes for controlled release. Sens. Actuators B Chem., 2014, 196: 676–681 link1

[29] R. Mhanna, Artificial bacterial flagella for remote-controlled targeted single-cell drug delivery. Small, 2014, 10(10): 1953–1957 link1

[30] F. Qiu, S. Fujita, R. Mhanna, L. Zhang, B. R. Simona, B. J. Nelson. Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery. Adv. Funct. Mater., 2015, 25(11): 1666–1671 link1

[31] A. Servant, F. Qiu, M. Mazza, K. Kostarelos, B. J. Nelson. Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv. Mater., 2015, 27(19): 2981–2988 link1

Related Research