Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Information Technology & Electronic Engineering >> 2022, Volume 23, Issue 1 doi: 10.1631/FITEE.2000325

An energy-efficient reconfigurable asymmetric modular cryptographic operation unit for RSA and ECC

Affiliation(s): Information Engineering University, Zhengzhou 450001, China; State Key Lab of ASIC and System, Fudan University, Shanghai 200000, China; less

Received: 2020-07-06 Accepted: 2022-01-24 Available online: 2022-01-24

Next Previous

Abstract

RSA and ellipse curve cryptography (ECC) algorithms are widely used in authentication, data security, and access control. In this paper, we analyze the basic operation of the ECC and RSA algorithms and optimize their modular multiplication and modular inversion algorithms. We then propose a modular operation architecture, with a mix-memory unit and double multiply-accumulate structures, to realize our unified, asymmetric cryptosystem structure in an operational unit. Synthesized with 55-nm CMOS process, our design runs at 588 MHz and requires only 437 801 μm of hardware resources. Our proposed design takes 21.92 and 23.36 mW for 2048-bit RSA modular multiplication and modular inversion respectively, as well as 16.16 and 15.88 mW to complete 512-bit ECC dual-field modular multiplication and modular inversion respectively. It is more energy-efficient and flexible than existing single algorithm units. Compared with existing multiple algorithm units, our proposed method shows better performance. The operation unit is embedded in a 64-bit RISC-V processor, realizing key generation, encryption and decryption, and digital signature functions of both RSA and ECC. Our proposed design takes 0.224 and 0.153 ms for 256-bit ECC point multiplication in and respectively, as well as 0.96 ms to complete 1024-bit RSA exponentiation, meeting the demand for .

Related Research