期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《机械工程前沿(英文)》 >> 2023年 第18卷 第4期 doi: 10.1007/s11465-023-0765-z

Multi-material additive manufacturing—functionally graded materials by means of laser remelting during laser powder bed fusion

发布日期: 0000-00-00

下一篇 上一篇

摘要

Many processes may be used for manufacturing functionally graded materials. Among them, additive manufacturing seems to be predestined due to near-net shape manufacturing of complex geometries combined with the possibility of applying different materials in one component. By adjusting the powder composition of the starting material layer by layer, a macroscopic and step-like gradient can be achieved. To further improve the step-like gradient, an enhancement of the in-situ mixing degree, which is limited according to the state of the art, is necessary. In this paper, a novel technique for an enhancement of the in-situ material mixing degree in the melt pool by applying laser remelting (LR) is described. The effect of layer-wise LR on the formation of the interface was investigated using pure copper and low-alloy steel in a laser powder bed fusion process. Subsequent cross-sectional selective electron microscopic analyses were carried out. By applying LR, the mixing degree was enhanced, and the reaction zone thickness between the materials was increased. Moreover, an additional copper and iron-based phase was formed in the interface, resulting in a smoother gradient of the chemical composition than the case without LR. The Marangoni convection flow and thermal diffusion are the driving forces for the observed effect.

相关研究