More Latest Research

Article  |  2019-12-20

Recent Advances in Smart Process Manufacturing

R.N. Lumley

Article  |  2019-12-11

Thermal and Mechanical Properties Optimization of ABO4 Type EuNbO4 By the B-Site Substitution of Ta

Ferroelastic ABO4 type RETaO4 and RENbO4 ceramics (where RE stands for rare earth) are being investigated as promising thermal barrier coatings (TBCs), and the mechanical properties of RETaO4 have been found to be better than those of RENbO4. In this work, B-site substitution of tantalum (Ta) is used to optimize the thermal and mechanical properties of EuNbO4 fabricated through a solid-state reaction (SSR). The crystal structure is clarified by means of X-ray diffraction (XRD) and Raman spectroscopy; and the surface microstructure is surveyed via scanning electronic microscope (SEM). The Young's modulus and the thermal expansion coefficient (TEC) of EuNbO4 are effectively increased; with respective maximum values of 169 GPa and 11.2×10–6 K–1 (at 1200 °C). The thermal conductivity is reduced to 1.52 W·K−1·m−1 (at 700 °C), and the thermal radiation resistance is improved. The relationship between the phonon thermal diffusivity and temperature was established in order to determine the intrinsic phonon thermal conductivity by eliminating the thermal radiation effects. The results indicate that the thermal and mechanical properties of EuNbO4 can be effectually optimized via the B-site substitution of Ta, and that
this proposed material can be applied as a high-temperature structural ceramic in future.

Lin Chen

Article  |  2020-02-11

Agriculture Green Development: a model for China and the world

Realizing sustainable development has become a global priority. This holds, in particular, for agriculture. Recently, the United Nations launched the Sustainable Development Goals (SDGs), and the Nineteenth National People’s Congress has delivered a national strategy for sustainable development in China—realizing green development. The overall objective of Agriculture Green Development (AGD) is to coordinate “green” with “development” to realize the transformation of current agriculture with high resource consumption and high environmental costs into a green agriculture and countryside with high productivity, high resource use efficiency and low environmental impact. This is a formidable task, requiring joint efforts of government, farmers, industry, educators and researchers. The innovative concept for AGD will focus on reconstructing the whole crop-animal production and food production-consumption system, with the emphasis on high thresholds for environmental standards and food quality as well as enhanced human well-being. This paper addresses the significance, challenges, framework, pathways and potential solutions for realizing AGD in China, and highlights the potential changes that will lead to a more sustainable agriculture in the future. Proposals include interdisciplinary innovations, whole food chain improvement and regional solutions. The implementation of AGD in China will provide important implications for the countries in developmental transition, and contribute to global sustainable development.

Jianbo SHEN

Article  |  2020-02-11

Research progress on human infection with avian influenza H7N9

Since the first case of novel H7N9 infection was reported, China has experienced five epidemics of H7N9. During the fifth wave, a highly pathogenic H7N9 strain emerged. Meanwhile, the H7N9 virus continues to accumulate mutations, and its affinity for the human respiratory epithelial sialic acid 2-6 receptor has increased. Therefore, a pandemic is still possible. In the past 6 years, we have accumulated rich experience in dealing with H7N9, especially in terms of virus tracing, epidemiological research, key site mutation monitoring, critical disease mechanisms, clinical treatment, and vaccine development. In the research fields above, significant progress has been made to effectively control the spread of the epidemic and reduce the fatality rate. To fully document the research progress concerning H7N9, we reviewed the clinical and epidemiological characteristics of H7N9, the key gene mutations of the virus, and H7N9 vaccine, thus providing a scientific basis for further monitoring and prevention of H7N9 influenza epidemics.

Xiaoxin Wu

More Focus

  • Intelligent Manufacturing

  • Advanced Materials and Materials Genome

  • Green Chemical Engineering

More Latest Conference

2019/12
02

British Society for Immunology Congress 2019

2019/11
20

International Forum on Frontiers of Energetic Materials

2019/10
27

IEEE SENSORS 2019

2019/10
19

17th International Congress of Immunology

2019/10
19

Society for Neuroscience's 49th Annualmeeting

2019/09
21

The 10th IBRO World Congress in 2019

2019/09
04

2019 IABSE Congress

2019/08
13

IVIS 2019

Wechat

Weibo