期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《化学科学与工程前沿(英文)》 >> 2023年 第17卷 第10期 doi: 10.1007/s11705-022-2204-9

High-gravity intensified iron-carbon micro-electrolysis for degradation of dinitrotoluene

发布日期: 2022-11-01

下一篇 上一篇

摘要

The application of iron–carbon (Fe–C) micro-electrolysis to wastewater treatment is limited by the passivation potential of the Fe–C packing. In order to address this problem, high-gravity intensified Fe–C micro-electrolysis was proposed in this study for degradation of dinitrotoluene wastewater in a rotating packed bed (RPB) using commercial Fe–C particles as the packing. The effects of reaction time, high-gravity factor, liquid flow rate and initial solution pH were investigated. The degradation intermediates were determined by gas chromatography-mass spectrometry, and the possible degradation pathways of nitro compounds by Fe–C micro-electrolysis in RPB were also proposed. It is found that under optimal conditions, the removal rate of nitro compounds reaches 68.4% at 100 min. The removal rate is maintained at approximately 68% after 4 cycles in RPB, but it is decreased substantially from 57.9% to 36.8% in a stirred tank reactor. This is because RPB can increase the specific surface area and the renewal of the liquid–solid interface, and as a result the degradation efficiency of Fe–C micro-electrolysis is improved and the active sites on the Fe–C surface can be regenerated for continuous use. In conclusion, high-gravity intensified Fe–C micro-electrolysis can weaken the passivation of Fe–C particles and extend their service life.

相关研究